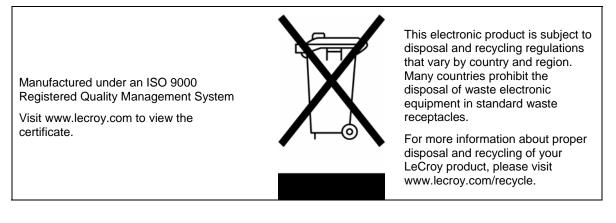


Wave Expert 100H Equivalent Time Sampling Oscilloscope System

Operator's Manual July 2007


LeCroy Corporation

700 Chestnut Ridge Road Chestnut Ridge, NY 10977–6499 Tel: (845) 578 6020, Fax: (845) 578 5985

Internet: www.lecroy.com

© 2007 by LeCroy Corporation. All rights reserved.

LeCroy, ActiveDSO, WaveLink, JitterTrack, WavePro, WaveMaster, WaveSurfer, WaveExpert, WaveJet, and Waverunner are registered trademarks of LeCroy Corporation. Other product or brand names are trademarks or requested trademarks of their respective holders. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.

WE100H-OM-E Rev A 915137 Rev A

INTRODUCTION	15
How to Use On-line Help	16
Type Styles	
Instrument Help	16
Windows Help	
Returning a Product for Service or Repair	
Technical Support	17
Staying Up-to-Date	
Windows License Agreement	
END-USER LICENSE AGREEMENT FOR LECROY® X-STREAM SOFTWARE	
Virus Protection	
Warranty	24
SPECIFICATIONS	26
Sampling Heads	26
🗥 Vertical System	26
Horizontal System	27
Acquisition System	
Acquisition Processing	
Triggering System	
Color Waveform Display	
Analog Persistence Display	
Zoom Expansion Traces	
Rapid Signal Processing	
Internal Waveform Memory	
Setup Storage	
Eye Doctor option	
Math Tools (standard)	
Measure Tools (standard)	30
Pass/Fail Testing	
General	
Warranty and Service	
Environmental Characteristics	

Humidity	
Altitude	31
Random Vibration	31
Shock	
Certifications	
	34
Safety Symbols	
Operating Environment	35
Cooling	
AC Power Source	
Power and Ground Connections	
Standby (Power) Switch and Scope Operational States	
Fuse Replacement	
Calibration	
Cleaning	
Abnormal Conditions	
BASIC CONTROLS	
Alternate Access Methods	40
Mouse and Keyboard Operation	
Tool Bar Buttons	
Trace Descriptors	41
Trace Annotation	41
To Annotate a Waveform	42
To Turn On a Channel Trace Label	43
Front Panel Controls	43
Front Panel Buttons and Knobs	
Trigger Knobs:	
Trigger Buttons:	45
Horizontal Knobs:	
Horizontal Buttons:	
Vertical Knobs:	
Channel Buttons:	
Wavepilot Control Knobs:	
Wavepilot Control Buttons:	
Measure	47

Analysis	
Quick Set Buttons:	
Scope	
TDR	
Eye	
Special Features Buttons:	
General Control Buttons:	
·	
On-screen Toolbars, Icons, and Dialog Boxes Menu Bar Buttons	
Dialog Boxes	
Screen Layout	
Menu Bar	
Signal Display Grid	
Dialog Area	
INSTALLATION	52
Hardware	
Instrument Rear Panel	52
Software	53
Checking the Scope Status	53
Default Settings	53
Adding a New Option	53
Restoring Software	54
Restarting the Application	
Restarting the Operating System	
Removable Hard Drive	
CONNECTING TO A SIGNAL	
Electrical Modules	
Connector Torque	
Optical Modules	
Module Extender	
SAMPLING MODES	
Sequential Sampling Mode	
Coherent Interleaved Sampling Mode	63

VERTICAL SETTINGS AND CHANNEL CONTROLS	64
Adjusting Sensitivity and Position	64
To Adjust Sensitivity	
To Adjust the Waveform's Position	64
Probe Attenuation To Set Probe Attenuation	
Linear and (SinX)/X Interpolation	65
To Set Up Interpolation	
Inverting Waveforms	65
QuickZoom To Turn On a Zoom	
Finding Scale	
To Use Find Scale	
Variable Gain	
To Enable Variable Gain	
Channel Deskew	
To Set Up Channel Deskew	66
Dark Calibration	
	60
TIMEBASE AND ACQUISITION SYSTEM	
Autosetup	
	68
Autosetup Timebase Setup and Control Operation Modes	68 68 68
Autosetup Timebase Setup and Control Operation Modes Operation Modes	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment TDR Measurement Procedure	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment TDR Measurement Procedure Calibrating Modules	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment TDR Measurement Procedure Calibrating Modules Reference Plane Calibration	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment TDR Measurement Procedure Calibrating Modules Reference Plane Calibration S-parameters	
Autosetup Timebase Setup and Control Operation Modes Operation Modes Scope Mode Eye Mode TDR Mode Required Equipment TDR Measurement Procedure Calibrating Modules Reference Plane Calibration S-parameters Making S-parameter Measurements	

to recall calibration	
TRIGGERING	89
Trigger Setup	
Trigger Setup Considerations	
Determining Trigger Level, Slope, Source, and Coupling Control Edge Triggering	
DISPLAY FORMATS	92
Display Setup	
Persistence Setup	
Saturation Level	
3-Dimensional Persistence	
Show Last Trace	
Persistence Time	
Locking of Traces	
To Set Up Persistence	
Screen Saver	
Moving Traces from Grid to Grid	
Zooming Waveforms	
To Zoom a Single Channel	
To Zoom by Touch-and-Drag	
To Zoom Multiple Waveforms Quickly	
Multi-Zoom	
XY Display	
To Set Up XY Displays	
Summary Displays	
SAVE AND RECALL	103
Saving and Recalling Scope Settings	
To Save Scope Settings	
To Recall Scope Settings	
To Recall Default Settings	
Saving Screen Images	
Saving and Recalling Waveforms	
Saving Waveforms	
Recalling Waveforms	
Disk Utilities	

5

To Delete a Single File	
To Delete All Files in a Folder	
To Create a Folder	
PRINTING AND FILE MANAGEMENT	
Print, Plot, or Copy	
Printing	
To Set Up the Printer	
To Print	
Adding Printers and Drivers	
Changing the Default Printer	
Managing Files	109
Hard Disk Partitions	
100BASE-T ETHERNET CONNECTION	110
Connecting to a Network	110
Communicating over the Network	110
Windows Setups	
System Restore	
TRACK VIEWS	112
Creating and Viewing a Trend	112
Creating a Track View	112
HISTOGRAMS	
Creating and Viewing a Histogram	114
To Set Up a Single Parameter Histogram	
To View Thumbnail Histograms	
Persistence Histogram	
Persistence Trace Range	
Persistence Sigma	
Histogram Parameters	117
Histogram Theory of Operation	131
Parameter Buffer	
Capture of Parameter Events	
Histogram Parameters	
Histogram Peaks	135
Binning and Measurement Accuracy	135

WAVEFORM MEASUREMENTS	137
Measuring with Cursors	137
Cursor Measurement Icons	137
Cursors Setup	137
Quick Display	137
Full Setup	138
Overview of Parameters	138
To Turn On Parameters	138
Quick Access to Parameter Setup Dialogs	138
Status Symbols	139
Using X-Stream Browser to Obtain Status Information	139
Statistics	141
To Apply a Measure Mode	142
Measure Modes	142
Standard Vertical Parameters	142
Standard Horizontal Parameters	142
My Measure	143
Parameter Math (WE-XMAP option required)	143
Logarithmic Parameters	
Excluded Parameters	143
Parameter Script Parameter Math	143
Param Script vs. P Script	144
To Set Up Parameter Math	
To Set Up Parameter Script Math	145
Measure Gate	
To Set Up Measure Gate	147
Help Markers	147
To Set Up Help Markers	
To Turn Off Help Markers	149
To Customize a Parameter	
From the Measure Dialog	
From a Vertical Setup Dialog	
From a Math Setup Dialog	150
Parameter Calculations	
Parameters and How They Work	
Determining Time Parameters	152

7

Determining Differential Time Measurements	
Level and Slope	
Eye Parameters	154
List of Parameters	156
Qualified Parameters	179
Range Limited Parameters	
Waveform Gated Parameters	180
To Set Up Waveform Qualifiers	
WAVEFORM MATH	182
Introduction to Math Traces and Functions	182
Math Made Easy	182
To Set Up a Math Function	
Resampling To Deskew	
To Resample	
Rescaling and Assigning Units	
To Set Up Rescaling	
Averaging Waveforms	
Summed vs. Continuous Averaging	
To Set Up Continuous Averaging	
To Set Up Summed Averaging	
Enhanced Resolution How the Instrument Enhances Resolution	
To Set Up Enhanced Resolution (ERES)	
Waveform Copy	
Waveform Sparser To Set Up Waveform Sparser	
Interpolation	
To Set Up Interpolation	
Fast Wave Port	
Fast Wave Port Setup Initial	
Setup Case 1	
Setup Case 2	
Setup Case 3	
Operational Notes	
Data Length Limitations	

Performance	
Choice of Programming Language	
Example Application	
Header Description	
Data Length Limitations	
Performance	
Choice of Programming Language	201
FFT	
Why Use FFT?	
Improving Dynamic Range	
Record Length	
FFT Algorithms	
Glossary	
FFT Setup	210
ANALYSIS	212
Pass/Fail Testing	
Comparing Parameters	212
Mask Tests	213
Actions	213
Setting Up Pass/Fail Testing	
Initial Setup	213
Comparing a Single Parameter	214
Comparing Dual Parameters	215
Mask Testing	
WAVEEXPERT SDA	
Introduction to WaveExpert SDA	
WaveExpert SDA Theory	
Initial Setup for Jitter Measurement	
Effect of PLL Loop Bandwidth on Measured Jitter	
Measuring Jitter	
Serial Data Controls	
Mask and Jitter Controls	
Check Scope Setup	
Signal	
Crossing Level	

Log(BER) 227 Histogram 227 Edge Fit 227 N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUJ Histogram (RjHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date Manually 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Preferences 236 Preferences 236	Signal Characteristics	
Repeating Pattern 226 Show +/-DCD 226 Log(BER) 227 Histogram 227 Edge Fit 227 N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUj Histogram (RjHist) 228 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Printing 233 File 233	Jitter Setup Dialog	225
Show +/-DCD 226 Log(BER) 227 Histogram 227 Edge Fit 227 N-Cycle 227 Lye Style 227 Jitter Setup Dialog View Selector 228 Dj Histogram (R]Hist) 228 DD Histogram (DD]Hist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 File 233 E-Mail 233 File 233 File 235 To Set Time and Date Manually 235	Measure Time	
Log(BER) 227 Histogram 227 Edge Fit 227 N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUJ Histogram (RjHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date Manually 235 To Set Time and Date from Windows 236 Profitime and Date from Windows 236 Preferences 236 Preferences 236 Preferences 236 Preferences 236 Date Bate from Windows	Repeating Pattern	
Histogram 227 Edge Fit 227 N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUj Histogram (RjHist) 228 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date Manually 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236		
Edge Fit 227 N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUJ Histogram (RjHist) 228 DDJ Histogram (DDJHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog. 232 To Access Status Dialog. 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log. 233 Printing 233 File 233 File 233 Clipboard. 233 For Set Time and Date Manually 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236		
N-Cycle 227 Eye Style 227 Jitter Setup Dialog View Selector 228 Rj+BUj Histogram (RjHist) 228 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog. 232 To Access Status Dialog. 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log. 233 Printing 233 File 233 File 233 Clipboard 233 To Set Time and Date Manually 235 To Set Time and Date from the Internet 235 To Set Time and Date from Windows 236 Options 236 Preferences 236		
Eye Style 227 Jitter Setup Dialog View Selector. 228 Rj+BUj Histogram (RjHist) 228 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathtub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date from the Internet 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236	0	
Jitter Setup Dialog View Selector 228 Rj+BUj Histogram (RjHist) 229 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES 232 Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date from the Internet 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236	-	
Rj+BUj Histogram (RjHist) 228 DDj Histogram (DDjHist) 229 Sync. N Cycles (SnCycle) 229 Bathub Curve (BathTub) 230 Eye Diagram (JitEye) 230 Edge Fit (EdgeFit) 231 UTILITIES Status 232 To Access Status Dialog 232 To Access Status Dialog 232 To Set Up Remote Communication 232 To Configure the Remote Control Assistant Event Log 233 Printing 233 Clipboard 233 File 233 E-Mail 234 Date & Time 235 To Set Time and Date Manually 235 To Set Time and Date from the Internet 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236		
DDj Histogram (DDjHist)229Sync. N Cycles (SnCycle)229Bathtub Curve (BathTub)230Eye Diagram (JitEye)230Edge Fit (EdgeFit)231UTILITIESStatus232To Access Status Dialog232To Access Status Dialog232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
Sync. N Cycles (SnCycle)229Bathtub Curve (BathTub)230Eye Diagram (JitEye)230Edge Fit (EdgeFit)231UTILITIESStatus232To Access Status Dialog232To Access Status Dialog232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
Bathtub Curve (BathTub)230Eye Diagram (JitEye)230Edge Fit (EdgeFit)231UTILITIES232Status232To Access Status Dialog232Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
Eye Diagram (JitEye)230Edge Fit (EdgeFit)231UTILITIES232Status232To Access Status Dialog232Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
Edge Fit (EdgeFit)231UTILITIES232Status232To Access Status Dialog232Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
UTILITIES232Status232To Access Status Dialog232Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log233Hardcopy233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Audible Feedback236		
Status232To Access Status Dialog232Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log232Hardcopy233Printing233Clipboard233File233E-Mail235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
To Access Status Dialog.232Remote communication232To Set Up Remote Communication.232To Configure the Remote Control Assistant Event Log.233Hardcopy233Printing233Clipboard.233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
Remote communication232To Set Up Remote Communication232To Configure the Remote Control Assistant Event Log232Hardcopy233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
To Set Up Remote Communication.232To Configure the Remote Control Assistant Event Log.232Hardcopy233Printing.233Clipboard.233File233E-Mail.235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236		
To Configure the Remote Control Assistant Event Log232Hardcopy233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog	232
Hardcopy233Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication	232 232
Printing233Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication	
Clipboard233File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log	
File233E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication To Configure the Remote Control Assistant Event Log Hardcopy	
E-Mail234Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing	
Date & Time235To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard	232 232 232 232 232 233 233 233 233
To Set Time and Date Manually235To Set Time and Date from the Internet235To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard File	232 232 232 232 232 233 233 233 233 233
To Set Time and Date from the Internet 235 To Set Time and Date from Windows 236 Options 236 Preferences 236 Audible Feedback 236	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard File E-Mail	232 232 232 232 232 233 233 233 233 233
To Set Time and Date from Windows236Options236Preferences236Audible Feedback236	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing. Clipboard. File E-Mail.	232 232 232 232 233 233 233 233 233 234 235
Options	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing. Clipboard. File E-Mail. Date & Time To Set Time and Date Manually	232 232 232 232 233 233 233 233 233 233
Preferences	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard. File E-Mail. Date & Time To Set Time and Date Manually To Set Time and Date from the Internet	
Audible Feedback	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing. Clipboard File E-Mail. Date & Time To Set Time and Date Manually To Set Time and Date from the Internet To Set Time and Date from Windows.	232 232 232 232 233 233 233 233 233 233
	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard File E-Mail Date & Time To Set Time and Date Manually To Set Time and Date from the Internet To Set Time and Date from Windows. Options	
Auto-calibration	To Access Status Dialog Remote communication To Set Up Remote Communication To Configure the Remote Control Assistant Event Log Hardcopy Printing Clipboard File E-Mail Date & Time To Set Time and Date Manually To Set Time and Date from the Internet To Set Time and Date from Windows Options Preferences	232 232 232 232 233 233 233 233 233 234 235 235 235 235 235 236 236 236
	To Access Status Dialog Remote communication To Set Up Remote Communication. To Configure the Remote Control Assistant Event Log Hardcopy Printing. Clipboard. File E-Mail. Date & Time To Set Time and Date Manually To Set Time and Date from the Internet. To Set Time and Date from Windows. Options. Preferences Audible Feedback	232 232 232 232 232 233 233 233 233 233

UI Language Selection	237
Performance Optimization	
Offset Control	
Delay Control	
E-mail	
Acquisition Status	
Service	
Show Windows Desktop	
Touch Screen Calibration	
CUSTOMIZATION	240
Customizing Your Instrument	
Introduction	
Solutions	241
Examples	241
What is Excel?	
What is Mathcad?	
What is MATLAB?	
What is VBS?	
What can you do with a customized instrument?	
Number of Samples	
Calling Excel From Your Instrument	
Calling Excel Directly from the Instrument	
How to Select a Math Function Call	
How to Select a Parameter Function Call	
The Excel Control Dialog	
Entering a File Name	
Organizing Excel Sheets	
Scale Setting the Vertical Scale	
Trace Descriptors	
Multiple Inputs and Outputs	
Simple Excel Example 1	
Simple Excel Example 2	
Exponential Decay Time Constant Excel Parameter (Excel Example 1)	
Gated Parameter Using Excel (Excel Example 2)	
How Does this Work?	
Correlation Excel Waveform Function (Excel Example 3)	

Multiple Traces on One Grid (Excel Example 4)	
Using a Surface Plot (Excel Example 5)	
WRITING VB SCRIPTS	
Types of Scripts in VBS	
Loading and Saving VBScripts	
The default parameter function script: explanatory notes	272
Scripting with VBScript	273
Variable Types	274
Variable Names	274
Arithmetic Operators	275
VBS Controls	
IF Then Else End If	278
Summary of If Then Else	279
Select Case	
Summary of Select Case End Select	
Do Loop	
While Wend	
For Next	
VBS keywords and functions	
Other VBS Words	
Functions	
Hints and Tips for VBScripting	
ERRORS	
Error Handling	
Speed of Execution	
Scripting Ideas	291
Debugging Scripts	291
Horizontal Control Variables	
Vertical Control Variables	
List of Variables Available to Scripts	
Communicating with Excel from a VBScript	
Calling MATLAB from The Instrument	
How to Select a Waveform Function Call	
The MATLAB Waveform Control Panel	
MATLAB Waveform Function Editor Example	
MATLAB Example Waveform Plot	

How to Select a MATLAB Parameter Call	
The MATLAB Parameter Control Panel	
The MATLAB Parameter Editor	303
MATLAB Example Parameter Panel	
Further Examples of MATLAB Waveform Functions	
Creating Your Own MATLAB Function	
CUSTOMDSO	
Custom DSO	
Introduction - What is CustomDSO?	
Invoking CustomDSO	
CustomDSO Basic Mode	
Editing a CustomDSO Setup File	
Creating a CustomDSO Setup File	
CustomDSO PlugIn Mode	312
Creating a CustomDSO PlugIn	
Properties of the Control and its Objects	314
Removing a PlugIn	
First Example PlugIn - Exchanging Two Traces on the Grids	319
Second Example PlugIn - Log-Log FFT Plot	
Control Variables in CustomDSO	
PROCESSING WEB OPTION	325
To Use the Web Editor	325
Adding Parameters	327
Adding Previews	
Exiting the Web Editor	328
Viewing the Output	
LABNOTEBOOK	329
Introduction to LabNotebook	
Preferences	
Miscellaneous Settings	
Hardcopy Setup	
E-mail Setup	
Creating a Notebook Entry	
Recalling Notebook Entries	
Creating a Report	
	.1.1

Previewing a Report	
Locating a Notebook Entry	
Creating the Report	
Formatting the Report	
Managing Notebook Entry Data	
Adding Annotations	
Deleting Notebook Entries	
Saving Notebook Entries to a Folder	
Managing the Database	
To Start a New Database	
CDR-E135	
Description	
Features	
Front of Module	
Operation	
Product Specifications	
Nominal Characteristics	
Typical Characteristics	
PPG-E135	
Description	
Features	
Front of Module	
Operation	
PPG Setup Menu	
Product Specifications	
Nominal Characteristics	
Typical Characteristics	

INTRODUCTION

Wave Expert 100H is an equivalent time sampling oscilloscope system consisting of a mainframe and up to four plug-in acquisition pods or modules. Different modules allow the connection of either optical or electrical signals to the instrument and bandwidths up to 100 GHz are available. In addition to the acquisition modules, PPG (pulse pattern generator) and CDR (clock and data recovery) modules are also available.

The heart of Wave Expert is the timebase which is housed in the mainframe. The timebase controls the acquisition heads by supplying a sampling pulse or strobe to the modules and digitizers which convert the stored charge in the modules into a numerical voltage value for display. Unlike more common DSO's, the timebase in Wave Expert samples only in the equivalent-time mode, that is, it samples at a rate much lower than its bandwidth but synchronous to the signal under test. This type of sampling requires that the signal under test be periodic and the timebase samples the signal at least once per period. The displayed waveform is built-up from multiple acquisitions of a single period of the signal with each acquisition being at a progressively longer delay from the previous one relative to the phase of the signal under test. This acquisition method is known as sequential sampling. Sequential sampling utilizes a trigger signal to determine the phase of the signal under test and the sampling strobe is generated by the timebase after a delay from the trigger. One sample is taken per trigger and the delay is slightly increased on each subsequent trigger. The sampling rate in this acquisition mode is determined by the trigger rate but is no faster than 500 kS/s.

Wave Expert 100H also features a powerful new sampling technique called High stability Coherent Interleaved Sampling (HCIS). This optional timebase (WE-HCIS) enables samples to be acquired at the rate of 10 MS/s independent of the trigger rate. HCIS does this by generating a sampling strobe that is phase-locked to the clock of the signal under test. An internal phase locked loop generates a 10 MHz strobe that is precisely offset from an integer sub-multiple of the signal clock so that the sampling point moves relative to the phase of the signal from sample to sample. The signal is constructed in much the same way as the sequential timebase except that the sampling rate is fixed at 10 MHz. The HCIS timebase has several distinct advantages over sequential sampling:

- 10 MHz sampling rate independent of the trigger
- very low intrinsic jitter 230 fs RMS (typical)
- automatic pattern locking up to PRBS23
- long waveform memory up to 510 M samples

The phase locked loop used to derive the sampling strobe from the clock is designed with a very narrow loop bandwidth in order to provide the lowest possible intrinsic jitter. A benefit of this arrangement is that jitter on the clock signal used as the HCIS reference will not affect the performance of the timebase. This is not true for sequential timebases where any jitter on the trigger signal directly translates into timebase jitter.

HCIS is optimized for acquiring high speed serial data signals and the timebase controls are unique compared to conventional sequential sampling oscilloscopes. The HCIS timebase is set up in terms of the data signal being measured. The timebase is first locked to the clock from the signal under

WE-OM-E Rev A

test and the user selects the number of samples per unit interval (UI or symbol). These two pieces of information are used to set the frequency of the sampling signal. If the data signal being tested has a repeating pattern, then the length is entered into the timebase menu if pattern-locking is desired. A pattern-locked trace (voltage vs. time) is useful for jitter analysis and where post-processing is required.

More detailed information on the modules and setting up the instrument is supplied in the appropriate sections of this manual.

How to Use On-line Help

Type Styles

Activators of pop-up text and images appear as green, underlined, italic: <u>*Pop-up*</u>. To close pop-up text and images after opening them, touch the pop-up text again.

Link text appears blue and underlined: Link. Links jump you to other topics, URLs, or images; or to

another location within the same Help window. After making a jump, you can touch the **Back** icon in the toolbar at the top of the Help window to return to the Help screen you just left. With each touch of the **Back** icon, you return to the preceding Help screen.

Instrument Help

HELP

Help

button **______**, you will be presented with a menu: you can choose either to have information found for you automatically or to search for information yourself.

If you want context-sensitive Help, that is, Help related to what was displayed on the screen when

you requested Help, touch in the drop-down menu, then touch the on-screen control (or front panel button or knob) that you need information about. The instrument will automatically display Help about that control.

If you want information about something not displayed on the screen, touch one of the buttons inside the drop-down menu to display the on-line Help manual:

🤣 Contents	Contents displays the Table of Contents.
Index	Index displays an alphabetical listing of keywords.
🔊 Search	Search locates every occurrence of the keyword that you enter.

WE-OM-E Rev A

 \Leftrightarrow

Lecroy.com	www.LeCroy.com connects you to LeCroy's Web site where you can find Lab Briefs, Application Notes, and other useful information. This feature requires that the instrument be connected to the internet through the Ethernet port on the scope's rear panel. Refer to Remote Communication for setup instructions.
	About opens the Utilities "Status" dialog, which shows software version and other system information.

Once opened, the Help window will display its navigation pane: the part of the window that shows the Table of Contents and Index. When you touch anywhere outside of the Help window, this navigation pane will disappear to reveal more of your signal. To make it return, touch the **Show**

- (
ਾ	E	

Show icon at the top of the Help window or touch inside the Help information pane.

Windows Help

In addition to instrument Help, you can also access on-line Help for Microsoft® Windows®. This help is accessible by minimizing the scope application, then touching the **Start** button in the Windows task bar at the bottom of the screen and selecting **Help**.

Returning a Product for Service or Repair

If you need to return a LeCroy product, identify it by its model and serial numbers. Describe the defect or failure, and give us your name and telephone number.

For factory returns, use a Return Authorization Number (RAN), which you can get from customer service. Write the number clearly on the outside of the shipping carton.

Return products requiring only maintenance to your local customer service center.

If you need to return your scope for any reason, use the original shipping carton. If this is not possible, be sure to use a rigid carton. The scope should be packed so that it is surrounded by a minimum of four inches (10 cm) of shock absorbent material.

Within the warranty period, transportation charges to the factory will be your responsibility. Products under warranty will be returned to you with transport prepaid by LeCroy. Outside the warranty period, you will have to provide us with a purchase order number before the work can be done. You will be billed for parts and labor related to the repair work, as well as for shipping.

You should prepay return shipments. LeCroy cannot accept COD (Cash On Delivery) or Collect Return shipments. We recommend using air freight.

Technical Support

You can get assistance with installation, calibration, and a full range of software applications from your customer service center. Visit the LeCroy Web site at http://www.lecroy.com for the center nearest you.

Staying Up-to-Date

To maintain your instrument's performance within specifications, have us calibrate it at least once a year. LeCroy offers state-of-the-art performance by continually refining and improving the instrument's capabilities and operation. We frequently update both firmware and software during service, free of charge during warranty.

You can also install new purchased software options in your scope yourself, without having to return it to the factory. Simply provide us with your instrument serial number and ID, and the version number of instrument software installed. We will provide you with a unique option key that consists of a code to be entered through the Utilities' Options dialog to load the software option.

Windows License Agreement

LeCroy's agreement with Microsoft prohibits users from running software on LeCroy X-Stream oscilloscopes that is not relevant to measuring, analyzing, or documenting waveforms.

END-USER LICENSE AGREEMENT FOR LECROY® X-STREAM SOFTWARE

IMPORTANT-READ CAREFULLY: THIS END-USER LICENSE AGREEMENT ("EULA") IS A LEGAL AGREEMENT BETWEEN THE INDIVIDUAL OR ENTITY LICENSING THE SOFTWARE PRODUCT ("YOU" OR "YOUR") AND LECROY CORPORATION ("LECROY") FOR THE SOFTWARE PRODUCT(S) ACCOMPANYING THIS EULA, WHICH INCLUDE(S): COMPUTER **PROGRAMS: ANY "ONLINE" OR ELECTRONIC DOCUMENTATION AND PRINTED** MATERIALS PROVIDED BY LECROY HEREWITH ("DOCUMENTATION"); ASSOCIATED MEDIA; AND ANY UPDATES (AS DEFINED BELOW) (COLLECTIVELY, THE "SOFTWARE PRODUCT"). BY USING AN INSTRUMENT TOGETHER WITH OR CONTAINING THE SOFTWARE PRODUCT, OR BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE PRODUCT, IN WHOLE OR IN PART, YOU AGREE TO BE BOUND BY THE TERMS OF THIS EULA. IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA, DO NOT INSTALL, COPY, OR OTHERWISE USE THE SOFTWARE PRODUCT; YOU MAY RETURN THE SOFTWARE PRODUCT TO YOUR PLACE OF PURCHASE FOR A FULL REFUND. IN ADDITION, BY INSTALLING, COPYING, OR OTHERWISE USING ANY MODIFICATIONS, ENHANCEMENTS, NEW VERSIONS, BUG FIXES, OR OTHER COMPONENTS OF THE SOFTWARE PRODUCT THAT LECROY PROVIDES TO YOU SEPARATELY AS PART OF THE SOFTWARE PRODUCT ("UPDATES"), YOU AGREE TO BE BOUND BY ANY ADDITIONAL LICENSE TERMS THAT ACCOMPANY SUCH UPDATES. IF YOU DO NOT AGREE TO SUCH ADDITIONAL LICENSE TERMS, YOU MAY NOT INSTALL, COPY, OR OTHERWISE USE SUCH UPDATES.

THE PARTIES CONFIRM THAT THIS AGREEMENT AND ALL RELATED DOCUMENTATION ARE AND WILL BE DRAFTED IN ENGLISH. LES PARTIES AUX PRÉSENTÉS CONFIRMENT LEUR VOLONTÉ QUE CETTE CONVENTION DE MÊME QUE TOUS LES DOCUMENTS Y COMPRIS TOUT AVIS QUI S'Y RATTACHÉ, SOIENT REDIGÉS EN LANGUE ANGLAISE.

1. GRANT OF LICENSE.

1.1 <u>License Grant.</u> Subject to the terms and conditions of this EULA and payment of all applicable fees, LeCroy grants to you a nonexclusive, nontransferable license (the "License") to: (a) operate the Software Product as provided or installed, in object code form, for your own internal business

purposes, (i) for use in or with an instrument provided or manufactured by LeCroy (an "Instrument"), (ii) for testing your software product(s) (to be used solely by you) that are designed to operate in conjunction with an Instrument ("Your Software"), and (iii) make one copy for archival and back-up purposes; (b) make and use copies of the Documentation; provided that such copies will be used only in connection with your licensed use of the Software Product, and such copies may not be republished or distributed (either in hard copy or electronic form) to any third party; and (c) copy, modify, enhance and prepare derivative works ("Derivatives") of the source code version of those portions of the Software Product set forth in and identified in the Documentation as "Samples" ("Sample Code") for the sole purposes of designing, developing, and testing Your Software. If you are an entity, only one designated individual within your organization, as designated by you, may exercise the License; provided that additional individuals within your organization may assist with respect to reproducing and distributing Sample Code as permitted under Section 1.1(c)(ii). LeCroy reserves all rights not expressly granted to you. No license is granted hereunder for any use other than that specified herein, and no license is granted for any use in combination or in connection with other products or services (other than Instruments and Your Software) without the express prior written consent of LeCroy. The Software Product is licensed as a single product. Its component parts may not be separated for use by more than one user. This EULA does not grant you any rights in connection with any trademarks or service marks of LeCroy. The Software Product is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. The Software Product is licensed, not sold. The terms of this printed, paper EULA supersede the terms of any on-screen license agreement found within the Software Product.

1.2 <u>Upgrades.</u> If the Software Product is labeled as an "upgrade," (or other similar designation) the License will not take effect, and you will have no right to use or access the Software Product unless you are properly licensed to use a product identified by LeCroy as being eligible for the upgrade ("Underlying Product"). A Software Product labeled as an "upgrade" replaces and/or supplements the Underlying Product. You may use the resulting upgraded product only in accordance with the terms of this EULA. If the Software Product is an upgrade of a component of a package of software programs that you licensed as a single product, the Software Product may be used and transferred only as part of that single product package and may not be separated for use on more than one computer.

1.3. <u>Limitations.</u> Except as specifically permitted in this EULA, you will not directly or indirectly (a) use any Confidential Information to create any software or documentation that is similar to any of the Software Product or Documentation; (b) encumber, transfer, rent, lease, time-share or use the Software Product in any service bureau arrangement; (c) copy (except for archival purposes), distribute, manufacture, adapt, create derivative works of, translate, localize, port or otherwise modify the Software Product or the Documentation; (d) permit access to the Software Product by any party developing, marketing or planning to develop or market any product having functionality similar to or competitive with the Software Product; (e) publish benchmark results relating to the Software Product, nor disclose Software Product features, errors or bugs to third parties; or (f) permit any third party to engage in any of the acts proscribed in clauses (a) through (e). In jurisdictions in which transfer is permitted, notwithstanding the foregoing prohibition, transfers will only be effective if you transfer a copy of this EULA, as well as all copies of the Software Product, whereupon your right to use the Software product will terminate. Except as described in this Section 1.3, You are not permitted (i) to decompile, disassemble, reverse compile, reverse

WE-OM-E Rev A

assemble, reverse translate or otherwise reverse engineer the Software Product, (ii) to use any similar means to discover the source code of the Software Product or to discover the trade secrets in the Software Product, or (iii) to otherwise circumvent any technological measure that controls access to the Software Product. You may reverse engineer or otherwise circumvent the technological measures protecting the Software Product for the sole purpose of identifying and analyzing those elements that are necessary to achieve Interoperability (the "Permitted Objective") only if: (A) doing so is necessary to achieve the Permitted Objective and it does not constitute infringement under Title 17 of the United States Code; (B) such circumvention is confined to those parts of the Software Product and to such acts as are necessary to achieve the Permitted Objective; (C) the information to be gained thereby has not already been made readily available to you or has not been provided by LeCroy within a reasonable time after a written request by you to LeCroy to provide such information; (D) the information gained is not used for any purpose other than the Permitted Objective and is not disclosed to any other person except as may be necessary to achieve the Permitted Objective; and (E) the information obtained is not used (1) to create a computer program substantially similar in its expression to the Software Product including, but not limited to, expressions of the Software Product in other computer languages, or (2) for any other act restricted by LeCroy's intellectual property rights in the Software Product. "Interoperability" will have the same meaning in this EULA as defined in the Digital Millennium Copyright Act, 17 U.S.C. §1201(f), the ability of computer programs to exchange information and of such programs mutually to use the information which has been exchanged.

1.4 <u>PRERELEASE CODE.</u> Portions of the Software Product may be identified as prerelease code ("Prerelease Code"). Prerelease Code is not at the level of performance and compatibility of the final, generally available product offering. The Prerelease Code may not operate correctly and may be substantially modified prior to first commercial shipment. LeCroy is not obligated to make this or any later version of the Prerelease Code commercially available. The License with respect to the Prerelease Code terminates upon availability of a commercial release of the Prerelease Code from LeCroy.

2. SUPPORT SERVICES.

At LeCroy's sole discretion, from time to time, LeCroy may provide Updates to the Software Product. LeCroy shall have no obligation to revise or update the Software Product or to support any version of the Software Product. At LeCroy's sole discretion, upon your request, LeCroy may provide you with support services related to the Software Product ("Support Services") pursuant to the LeCroy policies and programs described in the Documentation or otherwise then in effect, and such Support Services will be subject to LeCroy's then-current fees therefor, if any. Any Update or other supplemental software code provided to you pursuant to the Support Services will be considered part of the Software Product and will be subject to the terms and conditions of this EULA. LeCroy may use any technical information you provide to LeCroy during LeCroy's provision of Support Services, for LeCroy's business purposes, including for product support and development. LeCroy will not utilize such technical information in a form that personally identifies you.

3. PROPRIETARY RIGHTS.

3.1 <u>Right and Title.</u> All right, title and interest in and to the Software Product and Documentation (including but not limited to any intellectual property or other proprietary rights, images, icons,

photographs, text, and "applets" embodied in or incorporated into the Software Product, collectively, "Content"), and all Derivatives, and any copies thereof are owned by LeCroy and/or its licensors or third-party suppliers, and is protected by applicable copyright or other intellectual property laws and treaties. You will not take any action inconsistent with such title and ownership. This EULA grants you no rights to use such Content outside of the proper exercise of the license granted hereunder, and LeCroy will not be responsible or liable therefor.

3.2 <u>Intellectual Property Protection.</u> You may not alter or remove any printed or on-screen copyright, trade secret, proprietary or other legal notices contained on or in copies of the Software Product or Documentation.

3.3 Confidentiality. Except for the specific rights granted by this EULA, neither party shall use or disclose any Confidential Information (as defined below) of the other party without the written consent of the disclosing party. A party receiving Confidential Information from the other shall use the highest commercially reasonable degree of care to protect the Confidential Information, including ensuring that its employees and consultants with access to such Confidential Information have agreed in writing not to disclose the Confidential Information. You shall bear the responsibility for any breaches of confidentiality by your employees and consultants. Within ten (10) days after request of the disclosing party, and in the disclosing party's sole discretion, the receiving party shall either return to the disclosing party originals and copies of any Confidential Information and all information, records and materials developed therefrom by the receiving party, or destroy the same, other than such Confidential Information as to which this EULA expressly provides a continuing right to the receiving party to retain at the time of the request. Either party may only disclose the general nature, but not the specific financial terms, of this EULA without the prior consent of the other party; provided either party may provide a copy of this EULA to any finance provider in conjunction with a financing transaction, if such provider agrees to keep this EULA confidential. Nothing herein shall prevent a receiving party from disclosing all or part of the Confidential Information as necessary pursuant to the lawful requirement of a governmental agency or when disclosure is required by operation of law; provided that prior to any such disclosure, the receiving party shall use reasonable efforts to (a) promptly notify the disclosing party in writing of such requirement to disclose, and (b) cooperate fully with the disclosing party in protecting against any such disclosure or obtaining a protective order. Money damages will not be an adequate remedy if this Section 4.3 is breached and, therefore, either party shall, in addition to any other legal or equitable remedies, be entitled to seek an injunction or similar equitable relief against such breach or threatened breach without the necessity of posting any bond. As used herein, "Confidential Information" means LeCroy pricing or information concerning new LeCroy products, trade secrets (including without limitation all internal header information contained in or created by the Software Product, all benchmark and performance test results and all Documentation) and other proprietary information of LeCroy: and any business, marketing or technical information disclosed by LeCroy. or its representatives, or you in relation to this EULA, and either (i) disclosed in writing and marked as confidential at the time of disclosure or (ii) disclosed in any other manner such that a reasonable person would understand the nature and confidentiality of the information. Confidential Information does not include information (A) already in the possession of the receiving party without an obligation of confidentiality to the disclosing party, (B) hereafter rightfully furnished to the receiving party by a third party without a breach of any separate nondisclosure obligation to the disclosing party, (C) publicly known without breach of this EULA, (d) furnished by the disclosing party to a third party without restriction on subsequent disclosure, or (e) independently developed by the receiving

party without reference to or reliance on the Confidential Information.

4. TERMINATION.

This EULA will remain in force until termination pursuant to the terms hereof. You may terminate this EULA at any time. This EULA will also terminate if you breach any of the terms or conditions of this EULA. You agree that if this EULA terminates for any reason, the License will immediately terminate and you will destroy all copies of the Software Product (and all Derivatives), installed or otherwise, the Documentation, and the Confidential Information (and all derivatives of any of the foregoing) that are in your possession or under your control. The provisions of Sections 1.3, 4, 6, 7, 8, and 9 will survive any termination or expiration hereof.

5. U.S. GOVERNMENT RESTRICTED RIGHTS.

If any Software Product or Documentation is acquired by or on behalf of a unit or agency of the United States Government (any such unit or agency, the "Government"), the Government agrees that the Software Product or Documentation is "commercial computer software" or "commercial computer software documentation" and that, absent a written agreement to the contrary, the Government's rights with respect to the Software Product or Documentation are, in the case of civilian agency use, Restricted Rights, as defined in FAR §52.227.19, and if for Department of Defense use, limited by the terms of this EULA, pursuant to DFARS §227.7202. The use of the Software Product or Documentation by the Government constitutes acknowledgment of LeCroy's proprietary rights in the Software Product and Documentation. Manufacturer is LeCroy Corporation, 700 Chestnut Ridge Road, Chestnut Ridge, NY 10977 USA.

6. EXPORT RESTRICTIONS.

You agree that you will not export or re-export the Software Product, any part thereof, or any process or service that is the direct product of the Software Product (the foregoing collectively referred to as the "Restricted Components"), to any country, person, entity or end user subject to U.S. export restrictions. You specifically agree not to export or re-export any of the Restricted Components (a) to any country to which the U.S. has embargoed or restricted the export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan and Syria, or to any national of any such country, wherever located, who intends to transmit or transport the Restricted Components back to such country; (b) to any end user who you know or have reason to know will utilize the Restricted Components in the design, development or production of nuclear, chemical or biological weapons; or (c) to any end-user who has been prohibited from participating in U.S. export transactions by any federal agency of the U.S. government. You warrant and represent that neither the BXA nor any other U.S. federal agency has suspended, revoked or denied your export privileges. It is your responsibility to comply with the latest United States export regulations, and you will defend and indemnify LeCroy from and against any damages, fines, penalties, assessments, liabilities, costs and expenses (including reasonable attorneys' fees and court costs) arising out of any claim that the Software Product, Documentation, or other information or materials provided by LeCroy hereunder were exported or otherwise accessed, shipped or transported in violation of applicable laws and regulations.

7. RISK ALLOCATION.

7.1 <u>No Warranty.</u> THE SOFTWARE PRODUCT IS NOT ERROR-FREE AND THE SOFTWARE PRODUCT AND SUPPORT SERVICES IS/ARE BEING PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND. LECROY, FOR ITSELF AND ITS SUPPLIERS, HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, WITH RESPECT TO THE SOFTWARE PRODUCT OR ANY SUPPORT SERVICES INCLUDING, WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF TITLE OR NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, INTEGRATION, VALIDITY, EXCLUSIVITY, MERCHANTABILITY, NON-INTERFERENCE WITH ENJOYMENT, FITNESS FOR ANY PARTICULAR PURPOSE, AND ALL WARRANTIES IMPLIED FROM ANY COURSE OF DEALING OR USAGE OF TRADE. YOU ACKNOWLEDGE THAT NO WARRANTIES HAVE BEEN MADE TO YOU BY OR ON BEHALF OF LECROY OR OTHERWISE FORM THE BASIS FOR THE BARGAIN BETWEEN THE PARTIES.

7.2. Limitation of Liability. LECROY'S LIABILITY FOR DAMAGES FOR ANY CAUSE WHATSOEVER, REGARDLESS OF THE FORM OF ANY CLAIM OR ACTION, SHALL NOT EXCEED THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR U.S.\$5.00; PROVIDED THAT IF YOU HAVE ENTERED INTO A SUPPORT SERVICES AGREEMENT WITH LECROY, LECROY'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES WILL BE GOVERNED BY THE TERMS OF THAT AGREEMENT. LECROY SHALL NOT BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE, LOSS OF DATA, INTERRUPTION OF BUSINESS, NOR FOR INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES OF ANY KIND, WHETHER UNDER THIS EULA OR OTHERWISE ARISING IN ANY WAY IN CONNECTION WITH THE SOFTWARE PRODUCT, THE DOCUMENTATION OR THIS EULA. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO YOU. THESE LIMITATIONS ARE INDEPENDENT FROM ALL OTHER PROVISIONS OF THIS EULA AND SHALL APPLY NOTWITHSTANDING THE FAILURE OF ANY REMEDY PROVIDED HEREIN.

7.3 <u>Indemnification.</u> You will defend, indemnify and hold harmless LeCroy and its officers, directors, affiliates, contractors, agents, and employees from, against and in respect of any and all assessments, damages, deficiencies, judgments, losses, obligations and liabilities (including costs of collection and reasonable attorneys' fees, expert witness fees and expenses) imposed upon or suffered or incurred by them arising from or related to your use of the Software Product.

8. GENERAL PROVISIONS.

8.1 <u>Compliance with Laws.</u> You will comply with all laws, legislation, rules, regulations, and governmental requirements with respect to the Software Product, and the performance by you of your obligations hereunder, of any jurisdiction in or from which you directly or indirectly cause the Software Product to be used or accessed.

8.2 <u>No Agency</u>. Nothing contained in this EULA will be deemed to constitute either party as the agent or representative of the other party, or both parties as joint venturers or partners for any purpose.

8.3 <u>Entire Agreement; Waiver; Severability.</u> This EULA constitutes the entire agreement between the parties with regard to the subject matter hereof. No provision of, right, power or privilege under this EULA will be deemed to have been waived by any act, delay, omission or acquiescence by LeCroy, its agents, or employees, but only by an instrument in writing signed by an authorized officer of LeCroy. No waiver by LeCroy of any breach or default of any provision of this EULA by

you will be effective as to any other breach or default, whether of the same or any other provision and whether occurring prior to, concurrent with, or subsequent to the date of such waiver. If any provision of this EULA is declared by a court of competent jurisdiction to be invalid, illegal or unenforceable, such provision will be severed from this EULA and all the other provisions will remain in full force and effect.

8.4 <u>Governing Law; Jurisdiction; Venue.</u> This EULA will be governed by and construed in accordance with the laws of the State of New York, USA, without regard to its choice of law provisions. The United Nations Convention on Contracts for the International Sale of Goods will not apply to this EULA. Exclusive jurisdiction and venue for any litigation arising under this EULA is in the federal and state courts located in New York, New York, USA and both parties hereby consent to such jurisdiction and venue for this purpose.

8.5 <u>Assignment.</u> This EULA and the rights and obligations hereunder, may not be assigned, in whole or in part by you, except to a successor to the whole of your business, without the prior written consent of LeCroy. In the case of any permitted assignment or transfer of or under this EULA, this EULA or the relevant provisions will be binding upon, and inure to the benefit of, the successors, executors, heirs, representatives, administrators and assigns of the parties hereto.

8.6 <u>Notices.</u> All notices or other communications between LeCroy and you under this EULA will be in writing and delivered personally, sent by confirmed fax, by confirmed e-mail, by certified mail, postage prepaid and return receipt requested, or by a nationally recognized express delivery service. All notices will be in English and will be effective upon receipt.

8.7 <u>Headings.</u> The headings used in this EULA are intended for convenience only and will not be deemed to supersede or modify any provisions.

8.8 <u>Acknowledgment.</u> Licensee acknowledges that (a) it has read and understands this EULA, (b) it has had an opportunity to have its legal counsel review this EULA, (c) this EULA has the same force and effect as a signed agreement, and (d) issuance of this EULA does not constitute general publication of the Software Product or other Confidential Information.

Virus Protection

Because your scope runs on a Windows-based PC platform, it must be protected from viruses, as with any PC on a corporate network. It is crucial that the scope be kept up to date with Windows Critical Updates, and that anti-virus software be installed and continually updated.

Visit http://www.lecroy.com/dsosecurity for more information regarding Windows Service Pack compatibility with LeCroy operating software, and related matters.

Warranty

The instrument is warranted for normal use and operation, within specifications, for a period of one year from shipment. LeCroy will either repair or, at our option, replace any product returned to one of our authorized service centers within this period. However, in order to do this we must first examine the product and find that it is defective due to workmanship or materials and not due to misuse, neglect, accident, or abnormal conditions or operation.

LeCroy shall not be responsible for any defect, damage, or failure caused by any of the following: a) attempted repairs or installations by personnel other than LeCroy representatives, or b) improper

connection to incompatible equipment or c) for any damage or malfunction caused by the use of non-LeCroy supplies. Furthermore, LeCroy shall not be obligated to service a product that has been modified or integrated where the modification or integration increases the task duration or difficulty of servicing the oscilloscope. Spare and replacement parts, and repairs, all have a 90-day warranty.

The oscilloscope's firmware has been thoroughly tested and is presumed to be functional. Nevertheless, it is supplied without warranty of any kind covering detailed performance. Products not made by LeCroy are covered solely by the warranty of the original equipment manufacturer.

SPECIFICATIONS

Note: Specifications are subject to change without notice.

Sampling Heads

Module Performance (Guaranteed Values)

Module	Rise time	RMS noise	Aberrations	Bandwidth
ST-20	18 ps	700 µV	First 40 ps	20 GHz
SE-30	12 ps	1 mV	First 40 ps +/-10% 40 ps to 200 ps +/-5% 200 ps to 10 ns +/-2%	30 GHz
SE-50	8 ps	2 mV	First 40 ps +/-10% 40 ps to 200 ps +/-5% 200 ps to 10 ns +/-2%	50 GHz
SE-70	5 ps	3 mV	First 40 ps	70 GHz*
SE-100	4 ps	3 mV	First 40 ps	100 GHz*

* limited by connector molding

ME-15 Module Extender: 22 ps

A Vertical System

Maximum Input Channels: 4

Maximum Input Range: +/- 2 V

Dynamic Range: 2 V_{p-p}

Input Impedance: 50 ohms ±1%

Input Coupling: DC

Max Input Voltage: +/- 2.5 V

Static Sensitivity: The sampling module inputs are highly static sensitive. A grounding strap must be worn at all times when handling the modules.

Installation (Overvoltage) Category: CAT I

Vertical Resolution: 14 bits up to 17 bits with enhanced resolution (ERES)

Sensitivity: 1 mV/div to 1 V/div

Offset Range: -1 V to +1 V

Horizontal System

Timebases: 2 timebases common to all 4 channels are available; Sequential (SEQ) and High-stability Coherent Interleaved Sampling (HCIS)

Maximum Sampling Rate: 10 MS/s (CIS), 500 kS/s (SEQ)

Math & Zoom Traces: 4 independent zoom and 4 math/zoom traces standard; 8 math/zoom traces available with XMAP (Master Analysis Package) option

Timebase Jitter (typical): 210 fs rms (CIS); 0.8 ps rms (SEQ)

Acquisition System

Memory Options:

Memory Option	Sequential	Coherent Interleaved
Standard	100 K/channel	4 M/channel
M Memory Option	100 K/channel	128 M/channel, 510 M/ 1 channel

Acquisition Processing

Averaging: Summed averaging to 1 million sweeps; Continuous averaging to 1 million sweeps

Envelope (Extrema): Envelope, floor, roof for up to 1 million sweeps

Triggering System

Modes: normal, prescale, TDR (internal)

Sources: front panel SMA connectors for direct and prescale, internal 1 MHz clock for TDR

Coupling: DC 50 ohms for direct trigger, AC 50 ohms for prescaled trigger

Vertical Find Scale: Automatically sets the vertical sensitivity and offset for the selected channels to display a waveform with maximum dynamic range.

Color Waveform Display

Type: Color 10.4-inch flat panel TFT LCD with high resolution touch screen

Resolution: SVGA; 800 x 600 pixels

Real-time Clock: Date, hours, minutes, and seconds displayed with waveform; SNTP support to synchronize to precision internet clocks

Number of Traces: Maximum of eight traces; simultaneously displays channel, zoom, memory,

and math traces

Grid Styles: Single, Dual, Quad, Octal, XY, Single+XY, Dual+XY

Waveform Display Styles: Sample dots joined or dots only

Analog Persistence Display

Analog and Color-graded Persistence: Variable saturation levels; stores each trace's persistence data in memory

Persistence Selections: Select analog, color, or 3-D

Trace Selection: Activate Analog Persistence on all or any combination of traces

Persistence Aging Time: From 500 ms to infinity

Sweeps Displayed: All accumulated or all accumulated with last trace highlighted

Zoom Expansion Traces

Display up to 4 Zoom and 4 Math/Zoom traces; 8 Math/Zoom traces available with XMAP (Master Analysis Package) and XMATH (Advanced Math Package) options.

Rapid Signal Processing

Processor: Intel Pentium^{*} 4 @ 2.53 GHz (or better) with MS Windows[†] XP Platform

Processor Memory: 2 G bytes

Internal Waveform Memory

Waveform: M1, M2, M3, M4 (Store full-length waveforms with 16 bits/data point.) Or save to any number of files (limited only by data storage media).

Setup Storage

Front Panel and Instrument Status: Save to the internal hard drive, floppy drive, or to a USB connected peripheral device.

Interface

Remote Control: Through Windows Automation or LeCroy Remote Command set, supports front panel controls and internal functions via GPIB or Ethernet.

GPIB Port (optional): Supports IEEE-488.2

Ethernet Port: 10/100Base-T Ethernet interface

USB Ports: 6 USB ports (2 on the front panel) support Windows compatible devices.

External Monitor Port (standard): 15-pin D-Type SVGA compatible

^{*} Registered trademark of Intel Corp.

[†] Registered trademark of Microsoft Corp.

Parallel Port: 1 standard

Eye Doctor option

Eye doctor is a set of tools for analyzing signals in high bit rate serial data systems which generally employ equalization. Eye Doctor consists of two features that are orderable separately or bundled in one package. The two features are:

Virtual Probing – this feature simulates a signal at any point in a network using measurements at any other point in the same network.

Equalized Receiver Emulation – This feature implements a simulated receiver including equalization (DFE and FFE), clock recovery and detection. Equalized receiver emulation allows signals to be viewed as they would appear inside a receiver chip.

Eye Doctor is explained in detail in a separate manual.

Math Tools (standard)

- Display up to eight math function traces (F1 to F8). The easy-to-use graphical interface simplifies setup of up to two operations on each function trace. Function traces can be chained together to perform math-on-math.
- Parameter math -- add, subtract, multiply, or divide two different parameters.
- Histograms expanded with 19 histogram parameters and up to 2 billion events.
- Trend (datalog) of up to 1 million events
- Track graphs of any measurement parameter.
- FFT capability includes: power averaging, power density, real and imaginary components, frequency domain parameters, and FFT on up to 25 Mpts.
- Narrow-band power measurements
- Auto-correlation function
- Sparse function
- Cubic and quadratic interpolation function
- User-definable parameter measurements and math functions, using VBScripting with MS Excel and MATLAB

absolute value	invert (negate)
average (summed)	In (log base e)
average (continuous)	log (base 10)
derivative	product (X)
deskew (resample)	ratio (/)
difference ()	reciprocal
enhanced resolution (to 17 bits vertical)	rescale (with units)

envelope	roof
exp (base e)	segment
exp (base 10)	(sinX)/X
fft (basic)	square
floor	square root
histogram of 2e9 events	sum (+)
integral	trend (datalog) of 10,000 events
	zoom (identity)

Measure Tools (standard)

Display any 8 parameters together with statistics, including their average, high, low, and standard deviations. Histicons provide a fast, dynamic view of parameters and wave shape characteristics.

areaovershoot+baseovershoot-cyclespeak-to-peakdelayperioddelta delayphasedelta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min		
baseovershoot-cyclespeak-to-peakdelayperioddelta delayphasedelta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	amplitude	number of points
cyclespeak-to-peakdelayperioddelta delayphasedelta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	area	overshoot+
delayperioddelta delayphasedelta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	base	overshoot-
delta delayphasedelta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	cycles	peak-to-peak
delta time @ levelrise time (10-90%, 20-80%, @ level)durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	delay	period
durationrmsduty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	delta delay	phase
duty cyclestd. deviationfall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	delta time @ level	rise time (10-90%, 20-80%, @ level)
fall time (90-10%, 80-20%, @ level)time @ levelfirsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	duration	rms
firsttopfrequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	duty cycle	std. deviation
frequencywidthlastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	fall time (90-10%, 80-20%, @ level)	time @ level
lastx @ minimum (min.)level @ xx @ maximum (max.)maximumx at maxmeanx at min	first	top
level @ x x @ maximum (max.) maximum x at max mean x at min	frequency	width
maximum x at max mean x at min	last	x @ minimum (min.)
mean x at min	level @ x	x @ maximum (max.)
	maximum	x at max
minimum	mean	x at min
	minimum	

Pass/Fail Testing

Test multiple parameters against selectable parameter limits at the same time. Pass or fail conditions can initiate actions including: document to local or networked files, email the image of the failure, or save waveforms.

General

Auto Calibration: Ensures specified DC and timing accuracy is maintained for 1 year minimum.

Power Requirements: Single phase, 100 to 240 V_{rms} (±10%) at 50/60 Hz (±5%); or single phase,

WE-OM-E Rev A

30

100 to 120 V_{ms} (±10%) at 400 Hz (±5%); Automatic AC voltage selection

Voltage Range:	90 to 264 V _{rms}	90 to 132 V _{rms}
Frequency Range:	47 to 63 Hz	380 to 420 Hz

Power Consumption: On State: 400 watts (400 VA) depending on accessories installed (sampling modules, PC port plug-ins, etc.). Standby State: 12 watts

Fuse: One 5x20 mm fuse (T6.3 A/250 V)

Battery Backup: Front panel settings retained for two years minimum

Physical Dimensions (HWD): 264 mm x 397 mm x 491 mm (10.4 in. x 15.6 in. x 19.3 in.); height measurement excludes foot pads

Weight: 16 kg (36 lbs.)

Shipping Weight: 22 kg (48 lbs.)

Warranty and Service

1-year warranty; calibration recommended yearly

Optional service programs include extended warranty, upgrades, and calibration services.

Environmental Characteristics

Temperature

Operating: 5 to 40 °C

Storage (non-operating): -20 to +60 °C

Humidity

Operating: Maximum relative humidity 80% for temperatures up to 31 $^{\circ}$ C decreasing linearly to 50% relative humidity at 40 $^{\circ}$ C

Storage (non-operating): 5 to 95% RH (non-condensing) as tested per MIL-PRF-28800F

Altitude

Operating: Up to 2000 m

Storage (non-operating): Up to 12,192 m (40,000 ft)

Random Vibration

Operating: 0.31 grms, 5 Hz to 500 Hz, 15 minutes in each of 3 orthogonal axes

Non-operating: 2.4 grms, 5 to 500 Hz, 15 minutes in each of 3 orthogonal axes

Shock

Functional Shock: 20 g peak, half sine, 11 ms pulse, 3 shocks (positive and negative) in each of 3 orthogonal axes, 18 shocks total

Certifications	
	Meets intent of the European Council Directives 73/23/EEC for product safety and 89/336/EEC for electromagnetic compatibility. This declaration is based upon compliance of the WaveExpert oscilloscope to the following standards:
	EN 61326/A3:2003 EMC requirements for electrical equipment for measurement, control, and laboratory use.
	Emissions:
	EN 55011/A2:2002 Radiated & Conducted Emissions (Class A*)
	EN 61000-3-2/A2:2005 Harmonic Current Emissions
	Immunity:
	EN 61000-4-2:1999 Electrostatic discharge (<u>+</u> 4 kV contact discharge; <u>+</u> 8 kV air discharge)
	EN 61000-4-3: 2002+A1:2003 RF Radiated Fields (3 V/m, 80 MHz to 1 GHz, 80% amplitude modulated)
EC Declaration of Conformity	EN 61000-4-4: 2004 Electrical Fast Transient/Burst (1 kV on AC mains)
	EN 61000-4-5: 1995+A1:2001 Surge (1 kV differential mode, 2 kV common mode)
	EN 61000-4-6: 1996+A1:2001 RF Conducted Field (3 V, 150 kHz to 80 MHz, amplitude modulated with 1 kHz sine wave)
	EN 61000-4-11: 2004 Mains Dips and Interruptions (100% interruption for 1 full AC cycle)
	EN 61010-1: 2001 Safety requirements for electrical equipment for measurement control and laboratory use
	With the following limits:
	Installation (Overvoltage) Category II
	(Line voltage in equipment and to wall outlet)
	Installation (Overvoltage) Category I
	(All mains isolated terminals)

Pollution Degree 2
Protection Class I

* To conform to Radiated Emissions standard, use properly shielded cables on all I/O terminals.

UL and cUL Listed - Conforms to UL 61010-1, 2nd Edition and CAN/CSA C22.2 No. 61010-1-04

This section contains information and warnings that must be observed to keep the scope operating in a correct and safe condition. You are required to follow generally accepted safety procedures in addition to the safety precautions specified in this section.

Safety Symbols

Where the following symbols appear on the scope's front or rear panels, or in this manual, they alert you to important safety considerations.

This symbol is used where caution is required. Refer to the accompanying information or documents in order to protect against personal injury or damage to the scope.

This symbol warns of a potential risk of shock hazard.

This symbol is used to denote the measurement ground connection.

This symbol is used to denote a safety ground connection.

This symbol is used to denote a grounded frame or chassis terminal.

This symbol shows that the switch is a Standby (power) switch. When it is pressed, the scope's state toggles between operating and Standby mode. This switch is not a disconnect device. The scope can only be placed in a complete Power Off state by unplugging the power cord from the AC supply.

This symbol is used to denote "Alternating Current."

The ESD symbol indicates a potential hazard. It calls attention to the susceptibility of the equipment to electrostatic discharge (ESD) induced damage if anti-static measures are not taken.

CAUTION The CAUTION sign indicates a potential hazard. It calls attention to a procedure, practice or condition which, if not followed, could possibly cause damage to equipment. If a CAUTION is indicated, do not proceed until its conditions are fully understood and met.

- **WARNING** The WARNING sign indicates a potential hazard. It calls attention to a procedure, practice or condition which, if not followed, could possibly cause bodily injury or death. If a WARNING is indicated, do not proceed until its conditions are fully understood and met.
 - **CAT I** Installation (Overvoltage) Category rating per EN 61010-1 safety standard and is applicable for the oscilloscope front panel measuring terminals. CAT I rated terminals must only be connected to source circuits in which measures are taken to limit transient voltages to an appropriately low level.

Operating Environment

The scope is intended for indoor use and should be operated in a clean, dry environment. Before using this product, ensure that its operating environment will be maintained within these parameters:

Temperature: 5 to 40 °C

Humidity: Maximum relative humidity 80% for temperatures up to 31 $^\circ\text{C}$ decreasing linearly to 50% relative humidity at 40 $^\circ\text{C}$

Note: Direct sunlight, radiators, and other heat sources should be taken into account when assessing the ambient temperature.

The scope must not be operated in explosive, dusty, or wet atmospheres.

Protect the scope's display touch screen from excessive impacts with foreign objects.

Do not exceed the maximum specified front panel terminal voltage levels. Refer to Specifications for more details.

ESD sensitive: The sampling modules inputs are highly static sensitive. A grounding strap must be worn at all times when handling the modules.

Installation (Overvoltage) Category II refers to local distribution level, which is applicable to equipment connected to the mains supply (AC power source).

Installation (Overvoltage) Category I refers to signal level, which is applicable to equipment measuring terminals that are connected to source circuits in which measures are taken to limit transient voltages to an appropriately low level.

Pollution Degree 2 refers to an operating environment where normally only dry non-conductive pollution occurs. Occasionally a temporary conductivity caused by condensation must be expected.

Protection Class 1 refers to a grounded equipment, in which protection against electric shock is achieved by Basic Insulation and by means of a connection to the protective ground conductor in the building wiring.

Cooling

The scope relies on forced air cooling with internal fans and ventilation openings. Care must be taken to avoid restricting the airflow around the apertures (fan holes) at the sides and rear of the scope. To ensure adequate ventilation it is required to leave a 10 cm (4 inch) minimum gap around the sides and rear of the scope.

The scope also has internal fan control circuitry that regulates the fan speed based on the ambient temperature. This is performed automatically after start-up with no manual intervention required.

Note

The design of the instrument has been verified to conform to EN 61010-1 safety standard per the following limits:

Installation (Overvoltage) Categories II (Mains Supply Connector) & I (Measuring Terminals)

Pollution Degree 2

Protection Class I

Do not block the ventilation holes located on both sides and rear of the scope.

Do not allow any foreign matter to enter the scope through the ventilation holes, etc.

AC Power Source

The scope operates from a single-phase, 100 to **NOTE**: 240 V_{rms} (+/-10%) power source at 50/60 Hz (+/-5%), or single-phase 100 to 120 V_{rms} (+/-10%) at 400 Hz (+/-5%) power source.

No manual voltage selection is required because the scope automatically adapts to line voltage.

Depending on the accessories installed (sampling modules, PC port plug-ins, etc.), the scope can draw up to 400 W (400 VA).

The power supply of the scope is protected against short circuit and overload by a 5x20 mm fuse (T6.3 A/250 V). See Fuse Replacement section for replacement instructions.

Power and Ground Connections

The scope is provided with a grounded cord set containing a molded three-terminal polarized plug and a standard IEC320 (Type C13) connector for making line voltage and safety ground connection. The AC inlet ground terminal is connected directly to the frame of the scope. For adequate protection against electrical shock hazard, the power cord plug must be inserted into a mating AC outlet containing a safety ground contact.

In Standby mode the scope is still connected to the AC supply. The scope can only be placed in a complete Power Off state by physically disconnecting the power cord from the AC supply.

The scope should be positioned to allow easy access to the socket-outlet. To disconnect the scope from the AC supply, unplug the scope's power cord from the AC outlet after the scope is placed in Standby state.

See "Standby (Power) Switch and scope Operational States" section for more information.

WE-OM-E Rev A

The scope automatically adapts itself to the AC line input within the following ranges:

Voltage Range:	90 to 264 $V_{\mbox{\scriptsize rms}}$	90 to 132 V_{rms}
Frequency Range:	47 to 63 Hz	380 to 420 Hz

Electrical Shock Hazard!

Any interruption of the protective conductor inside or outside of the scope, or disconnection of the safety ground terminal creates a hazardous situation.

Intentional interruption is prohibited.

Standby (Power) Switch and Scope Operational States

The front Standby (Power) switch controls the operational state of the scope. This toggle switch is activated by momentarily pressing and releasing it. The color of the LED below the switch indicates the status of the scope as follows:

On (LED Green)* scope is fully powered and operational

Standby (LED Off)* scope is powered off (except for some "housekeeping" circuits)

Standby (LED Red) scope's computer subsystems (hard drive, etc.) are in Standby (reduced Power mode). All other scope subsystems are fully powered.

* Factory Settings

The scope's factory settings result in only two basic scope states: On (LED Green) or Standby (LED Off). In this case of Standby (LED Off), the scope is powered off with the exception of some "housekeeping" circuitry (approximately 12 watts dissipation). The scope can only be placed in a complete power off state by unplugging the scope's power cord from the primary power source (AC outlet). It is recommended that the power cord be unplugged from the AC outlet if the scope is not being used for an extended period of time.

You have the option to change the scope's original factory settings via the "Power Options Properties" menu in Windows by following the path: Settings Power Options. It is important to note that the Windows Power Option named "Standby" provides control of only the scope's computer subsystems (CPU, hard drive, etc.) and does not affect the other subsystems within the scope. In general, these other subsystems remain fully powered. For additional information on setting these Power Options, see the Windows Help menu or other related technical documentation. In terms of control buttons, this scope uses only a power button/switch and therefore references to a sleep button are not applicable.

The scope can always be placed in the Standby state (LED Off) Power Off (except for some "housekeeping" circuits) by pressing and holding in the Standby toggle switch for approximately 5 seconds.

Fuse Replacement

Set the scope Standby (power) switch to Standby mode (LED off) and disconnect the power cord before inspecting or replacing the fuse. Open the black fuse holder (located at the rear of the scope directly to the right of the For continued fire protection at all line voltages, AC inlet) using a small, flat-bladed screwdriver. Remove the old fuse, replace it with a new 5x20 mm "T" rated 6.3 A/250 V fuse, and reinstall the fuse holder.

replace fuse with the specified type and rating only. Disconnect the power cord before replacing fuse.

Calibration

The recommended calibration interval is one year. Calibration should be performed by gualified personnel only.

Cleaning

Clean only the exterior of the scope, using a damp, soft cloth. Do not use chemicals or abrasive elements. Under no circumstances allow moisture to penetrate the scope. To avoid electrical shock, unplug the power cord Electrical Shock Hazard! from the AC outlet before cleaning.

No operator serviceable parts inside. Do not remove covers.

Refer servicing to qualified personnel.

Abnormal Conditions

Operate the scope only as intended by the manufacturer.

If you suspect the scope's protection has been impaired, disconnect the power cord and secure the scope against any unintended operation.

The scope's protection is likely to be impaired if, for example, the scope shows visible damage or has been subjected to severe transport stresses.

Proper use of the scope depends on careful reading of all instructions and labels.

Any use of the scope in a manner not specified by the manufacturer may impair the scope's safety protection. The scope and related accessories should not be directly connected to human subjects or used for patient monitoring.

BASIC CONTROLS

Alternate Access Methods

The instrument often gives you more than one way to access dialogs and menus.

Mouse and Keyboard Operation

In the procedures we focus on touch-screen operation, but if you have a mouse connected to the instrument, you can also click on objects. Likewise, if you have a keyboard connected, you can use it instead of the virtual keyboard provided by the instrument.

If you want to connect a mouse to the instrument, use only a USB mouse.

Tool Bar Buttons

The procedures also focus on the use of the menu bar at the top of the screen to access dialogs and menus. However, on several dialogs common functions are accessible from a row of buttons that save you a step or two in accessing their dialogs. For example, at the bottom of the Channel Setup dialog, these buttons perform the following functions:

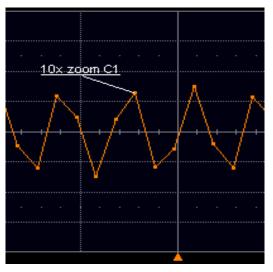
Measure	Calls up the Measure menu. You can then select a parameter from this menu without leaving the Channel Setup dialog. The parameter automatically appears below the grid.
Zoom	Creates a zoom trace of the channel trace whose dialog is currently displayed.
f(x) Math	Calls up the Math menu. You can then select a math function from this menu without leaving the Channel Setup dialog. A math trace of the channel whose dialog is currently open is automatically displayed.
Store	Loads the channel trace into the next available memory location (M1 to M4).
Find Scale	Automatically performs a vertical scaling that fits the waveform into the grid.
Next Grid	Automatically moves the channel trace whose dialog is currently open onto the next grid. If you have only one grid displayed, a new grid will be created automatically, and the trace moved.
Label	Enables you to attach identifying labels to your waveforms. The labels are preserved when the waveform is saved as a LabNotebook entry and when saved to file.

Another example is these buttons that appear at the bottom of the Measure Px dialogs. Each button opens a menu from which to choose a math trace (F1 to Fx) to display the functions named in the

buttons:

By using these buttons you can remain in the Measure dialog to set up other options.

Trace Descriptors

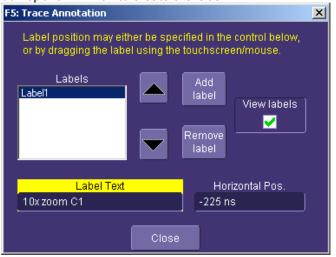

Vertical and horizontal trace descriptors (labels) are displayed below the grid. They provide a summary of your channel, timebase, and trigger settings. To make adjustments to these settings, touch the respective label to display the setup dialog for that function.

C1 (NN SINN) 100 mV/div -116 mV offset ↓ -93 mV † 148 mV	Channel trace labels show the vertical settings for the trace, as well as cursor information if cursors are in use. In the title bar of the label are also included indicators for (SinX)/X interpolation, waveform inversion (INV), deskew (DSQ), and averaging (AVG). These indicators have a long and short form, dependent on available space in the title bar of the label:
	Besides channel traces, math and parameter measurement labels are also displayed. Labels are displayed only for traces that are turned on.
<mark>TimeBase 0.00 µs</mark> 500 ns/div 50.0 kS 10.0 GS/s	setting. Time per division and sampling information is given below
Trigger Auto DC C1.0 mV Edge Positive	The title bar of the Trigger label shows the trigger source: direct, prescale, or TDR. Below the title bar is given the mode (stop, auto, or normal), level (0 mV), and slope (Positive).
	Shown below the Timebase and Trigger labels is setup information for horizontal cursors, including the time between

Trace Annotation

The instrument gives you the ability to add an identifying label, bearing your own text, to a waveform display:

cursors and the frequency.



For each waveform, you can create multiple labels and turn them all on or all off. Also, you can position them on the waveform by dragging or by specifying an exact horizontal position.

The labels are preserved when the waveform is saved as a LabNotebook entry and when saved to file.

To Annotate a Waveform

1. Touch the waveform you want to annotate, then **Set label...** in the pop-up menu. A dialog box opens in which to create the label.

If you are creating a label for the first time for this waveform, **Label1** is displayed with default text. If you are modifying an existing label, under **Labels** touch the label you want to change.

Label

Note 1: If the dialog for the trace you want to annotate is currently displayed, you can touch the label button the bottom to display the Trace Annotation setup dialog.

Note 2: You may place a label anywhere you want on the waveform. Labels are numbered sequentially according to the order in which they are added, and not according to their placement on the waveform.

- If you want to change the label's text, touch inside the Label Text field. A pop-up keyboard appears for you to enter your text. Touch O.K. on the keyboard when you are done. Your edited text will automatically appear in the label on the waveform.
- 3. To place the label precisely, touch inside the **Horizontal Pos.** field and enter a horizontal value, using the pop-up numeric keypad.
- 4. To add another label, touch the **Add label** button. To delete a label, select the label from the list, then touch the **Remove label** button.
- 5. To make the labels visible, touch the **View labels** checkbox.

To Turn On a Channel Trace Label

Note: If you want to display each trace on its own grid automatically, enable Autogrid by touching **Display** in the menu bar, then **Autogrid** in the drop-down menu.

- On the front panel, press a channel select button, such as *interselect*, to display the trace label for that input channel and turn on the channel.
- To turn on a math function trace, touch **Math** in the menu bar, then **Math Setup...** in the drop-down menu. Touch the **On** checkbox for the trace you want to activate.
- You can also quickly create traces (and turn on the trace label) for math functions and memory traces, without leaving the Vertical Adjust dialog, by touching the icons at the bottom of the Vertical Adjust dialog:

Whenever you turn on a channel, math, or memory trace via the menu bar at the top of the screen, the dialog at the bottom of the screen automatically switches to the vertical setup or math setup dialog for that selection. You can configure your traces from here, including math setups.

The channel number appears in the **Vertical Adjust** tab of the "Vertical Adjust" dialog, signifying that all controls and data entry fields are dedicated to the selected trace.

Front Panel Controls

Front Panel Buttons and Knobs

The control buttons of the instrument's front panel are logically grouped into analog and special functional areas. Analog functions are included in the Horizontal, Trigger, and Vertical groups of control buttons and knobs.

Sometimes you may want to change a value without using the numeric keypad. In that case, simply touch once inside the data entry field in the scope dialog area (the field will be highlighted in yellow), then use the Adjust group of buttons and single knob to dial in values into the selected field.

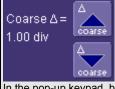
Operator's Manual

By default, the control knob makes coarse adjustments (that is, digits to the left of the decimal point). Press the **FINE** button to adjust digits to the right of the decimal point. To enter exact values, you can also display a keypad by touching twice inside the data entry field.

Example Data Entry Field

Volts/div				
			50.0 m	v]
Set to Max.	7	8	9	m
Set to Default	4	5	6	
Set to Min.	1	2	3	
		0	+/-	
Variable Variable	Clear	Back	EXP	
		Canc	el	ок

Example Pop-up Numeric Keypad


Then use the keypad to type in the value. The **Select** button steps through a dialog from one control to the next.

Note: You can set the granularity (delta) of the coarse adjustment in two ways:

• By pressing and holding the Fine front panel button while turning the Adjust knob. In this case you can read the changing delta in the data entry field that is selected:

<mark>Sweeps</mark> ∮=1.00 ksweep

• By double-tapping inside the data entry field, then touching the **Advanced** checkbox in the pop-up numeric keypad. The keypad presents **Coarse** delta up/down buttons to set the delta:

In the pop-up keypad, be sure to leave the **Fine** checkbox unchecked to adjust the coarse delta.

Trigger	
Knobs:	
Level	Selects the trigger threshold level. The Level is indicated in the Trigger label:
	Trigger Trigger Normal 0 m∨ Edge Positive
	Note: the trigger level control is only active in the sequential timebase when the "Trigger" input on the front panel is being used
Trigger Buttons:	
Setup	Activates the trigger setup menu to select the trigger type and the trigger conditions.
Stop	Prevents the scope from triggering on a signal. If you boot up the instrument with the trigger in Stop mode, the message "no trace available" will be displayed. Press Auto to display your trace.
Auto	Triggers the scope using the internal timebase if no trigger is present, or using the selected trigger input if a trigger signal is present.
Normal	Triggers the scope only when a trigger signal is present at the selected trigger input.
Single	Enables triggering on the selected trigger input until the selected waveform memory is filled, after which the trigger is disabled.

Operator's Manual

Horizontal Knobs:	
Delay	Horizontally positions the scope trace on the display. The minimum setting is 12 ns in sequential mode and 0 ns in the CIS mode.
Time/Division	Sets the time/division of the scope timebase (acquisition system). The time scale is adjusted from the left edge or the center of the display. This choice is made in the Preferences menu. The default is the left edge of the screen.
Horizontal Buttons:	
Zero	Sets the horizontal delay to zero. The trigger point is positioned on the left edge of the display. This button sets the delay to 12 ns (minimum) in Sequential mode.
Calibrate	Sets up the automatic calibration mode for the sampling strobes and TDR pulses.
Setup	Activates the TIMEBASE menu to allow you to select acquisition conditions, including the sample mode, maximum memory length, etc.
Vertical Knobs:	
Offset	Adjusts the vertical offset of a channel.
Volts/Div	Adjusts the Volts/Division setting of the channel selected. Note that this function operates as a zoom of the acquired trace because there are no gain or attenuation functions within the sampling modules.
Channel Buttons:	
1, 2, 3, 4	Turns a channel on or off. These buttons activate the dialog that lets you change the channel's setup conditions including coupling, gain, and offset. They are used also to select multiple grids, to automatically set the gain (FIND SCALE), or to automatically display a zoom of the signal. Press twice to toggle the trace on and off. The Vertical dialog is context sensitive giving different setup choices for the eye mode and oscilloscope modes.
Wavepilot Control Knobs:	
- Position	Adjusts the horizontal position of a zoom trace on the display. The zoom region is highlighted in color on the source trace.
≁ ► Zoom	Adjusts the horizontal zoom (magnification factor) of the selected zoom trace.

Wave Expert

Position	Adjusts the vertical position of the selected zoom trace on the display.
‡ Zoom	Adjusts the vertical zoom (magnification factor) of the selected zoom trace on the display.
Wavepilot Control Buttons:	
Reset	Resets the zoom factors.
Math	Provides access to the Math setup dialog.
Measure	Provides access to the Measure setup dialog.
Analysis	Provides access to the Analysis setup dialogs.
Quick Set Buttons:	
Scope	Takes the scope out of TDR or Eye mode.
TDR	Provides access to the TDR setup dialog and sets the scope to TDR mode.
Eye	Provides access to the Eye mode setup dialog and sets the scope to eye mode.
Special Features Buttons:	
Auto Setup	Automatically sets the scope's horizontal timebase (acquisition system), vertical gain and offset, as well as trigger conditions, to display a wide variety of signals.
Cursors	The center button calls up the "Standard Cursors" setup dialog. The other two buttons control the placement of the cursors on your waveform.
Default Setup	Sets the scope's horizontal timebase (acquisition system), vertical gain and offset, and trigger conditions to default settings.
Help	Displays the on-line Help manual. You can choose to receive control help, or to search for the information you need using the Table of Contents and Index. Control Help displays help for a particular button, menu item, data field, etc. contained in the dialogs.
Save/Recall	Calls up the dialogs for saving and recalling waveforms and setups, and for disk utilities.
Analog Persist	Provides a three dimensional view of the signal: time, voltage, and a third dimension related to the frequency of occurrence, as shown by a color-graded

Operator's Manual

	(thermal) or intensity-graded display.
QuickZoom	Automatically displays magnified views of up to four signal inputs on multiple grids. With four input signals, the signals are displayed along with four zoom traces, each on its own grid. This button turns off all other traces.
General Control Buttons:	
Print Screen	Prints the displayed screen to a file, a printer, the clipboard, or attaches it as an e-mail. Select the device and format it in the Utilities> Hardcopy dialog.
Utilities	For setup of scope features including hardcopy devices and formats, date and time, and remote control interfaces, etc.; or for checking status, options, etc
Touch Screen (toggle switch)	Activates or deactivates the touch screen.
Clear Sweeps	Clears data from multiple sweeps (acquisitions) including: persistence trace displays, averaged traces, parameter statistics, and Histicons. During waveform readout, cancels readout.
STANDBY Lamp:	The STANDBY lamp indicates when the scope has placed itself in standby mode. In this mode, current settings are retained.

On-screen Toolbars, Icons, and Dialog Boxes

Menu Bar Buttons

The menu bar buttons at the top of the scope's display are designed for quick setup of common functions. At the right end of the menu bar is a quick setup button that, when touched, opens the setup dialog associated with the trace or parameter named beside it. The named trace or parameter is the one whose setup dialog you last opened:

This button also appears as an undo button after front panel buttons Autosetup and

QUICKZOOM are pressed. If you want to perform an Undo operation, it must be the very next operation after you perform the Autosetup or QuickZoom operation.

Display Buttons	Front Panel Push Buttons
File	SAVE / RECALL
Vertical	VERTICAL VERTICAL V MV V MV
Timebase	HORIZONTAL POSITION ZERO CAUBRATE S NS SETUP
Trigger	TRIGGER LEVEL AUTO Image: Auton of the second sec

Many of the menu bar buttons give you access to the same functions as do the front panel buttons. Refer to this Table of Equivalent Functions.

Operator's Manual

Cursors	CURSORS
 Zoom	-Q.
(icon in Channels dialog zooms one trace)	(zooms all displayed traces)
Timebase 0.00 ns CIS 500 ps/div 16.0 kS 310 fs/S (then TDR button) Timebase 0.00 ns CIS 500 ps/div 16.0 kS 310 fs/S (then TDR button) Timebase Timebase 0.00 ns CIS 500 ps/div 16.0 kS 310 fs/S (then Eye button)	
Utilities	UTILITIES
(then Utilities Setup)	
Help	HELP

Dialog Boxes

The dialog area occupies the bottom one-third of the screen. To expand the signal display area, you can minimize each dialog box by touching the **Close** tab at the right of the dialog box.

Screen Layout

The instrument's screen is divided into three areas:

- menu bar
- signal display area
- dialog area

Menu Bar

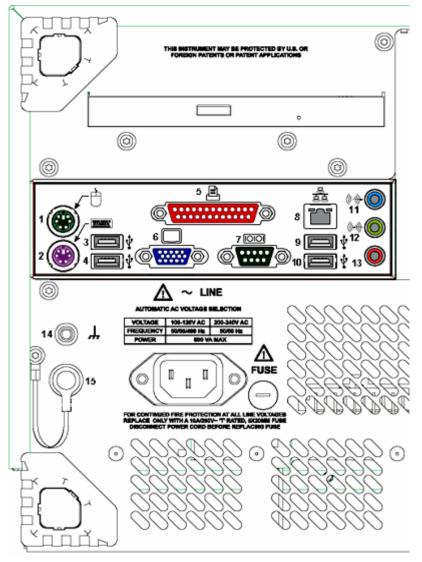
The top of the screen contains a toolbar of commonly used functions. Whenever you touch one of these buttons, the dialog area at the bottom of the screen switches to show the setup for that function.

Signal Display Grid

Display

Display

You can set up the signal display area by touching **sector** in the toolbar, then the **land** tab. The display dialog offers a choice of grid combinations and a means to set the grid intensity.

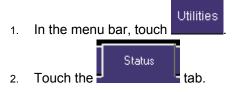

Dialog Area

The lower portion is where you make selections and input data. The dialog area is controlled by both toolbar touch buttons and front panel push buttons. Similarities between functions are shown in the Table of Equivalent Functions above.

INSTALLATION

Hardware

Instrument Rear Panel



(1) Mouse; (2) Keyboard; (3) USB Port; (4) USB Port; (5) Centronics Port; (6) External VGA Monitor; (7) RS-232-C Port; (8) Ethernet Port; (9) USB Port; (10) USB Port; (11) Line In; (12) Speakers; (13) Microphone; (14) Ground Connector; (15) Gated Trigger Input with Grounded EMI Shield installed (required when port is not in use)

Software

Checking the Scope Status

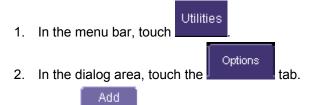
To find out the scope's software and hardware configuration, including software version and installed options, proceed as follows:

You can find information related to hard drive memory, etc. as follows:

- File
- 1. Minimize the instrument application by touching **Minimize** in the drop-down menu.
- 2. Touch the **Start** taskbar button and, per usual Windows® operation, open Windows Explorer.

Default Settings

You can reset the scope to default settings by simply pressing the **DEFAULT SETUP** push button on the front panel. This feature turns on Channel1 and Channel 2, with no processing enabled.


Other default settings are as follows:

Vertical	Timebase	Trigger
100 mV/div	1.00 ns/div	Prescale
0 V offset	1.0 KS, -12 ns delay	
	Sequential acquisition	Auto trigger mode

Adding a New Option

To add a software option you need a key code to enable the option. Call LeCroy Customer Support to place an order and receive the code.

To add the software option do the following:

- 3. Touch
- 4. Use the pop-up keyboard to type the key code. Touch **O.K.** on the keyboard to enter the

information.

5. The name of the feature you just installed is shown below the list of key codes. You can use the scroll buttons to see the name of the option installed with each key code listed:

The full array of installed software and hardware options is displayed on the left side of the dialog:

Installed Software Options	DDM2 JTA2 XMAP
Installed Hardware Options	-XL

Restoring Software

Restarting the Application

Upon initial power-up, the scope will load the instrument application software automatically. If you exit the application and want to reload it, touch the shortcut icon on the desktop:

If you minimize the application, touch the appropriate task bar or desktop icon to maximize it:

Restarting the Operating System

If you need to restart the Windows® operating system, you will have to reboot the scope by pressing and holding in the power switch for 10 seconds, then turning the power back on.

Removable Hard Drive

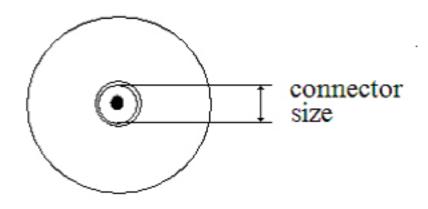
The removable hard drive option replaces the standard internal hard drive with a removable hard drive that is installed at the rear of the scope, in the slot normally occupied by the CD-ROM drive. The kit includes two hard drives, which can be used interchangeably. It also includes a USB CD-ROM for loading of new software.

Caution! The Removable Hard Drive Is Not Hot-swappable

To avoid damage to the drive or the oscilloscope, shut off power to the oscilloscope before you insert or remove the hard drive. Ensure that the protective cover is installed over the drive at all times.

Proper Orientation of Drive

Operator's Manual


Protective Cover

CONNECTING TO A SIGNAL

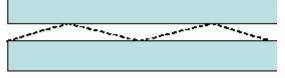
Electrical Modules

The sampling modules are equipped with RF connectors of different types depending on the bandwidth of the particular module, as indicated in the table below. The modules have male connectors, and each module is shipped with a female-to-female adapter that matches the connector type. This adapter should be attached to the module whenever possible, as it will protect the connector on the module from possible damage caused by incorrect threading of cables or connectors.

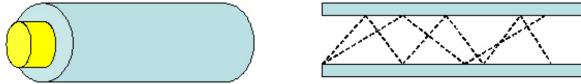
The connector types on the modules are named according to the inside diameter of their outer conductor. This diameter must be matched within any connectors or cables attached to the module in order to maintain the specified bandwidth.

Module	Bandwidth	Connector Type	
ST-20	20 GHz	2.92 mm	
SE-30	30 GHz	2.92 mm	
SE-50	50 GHz	2.40 mm	
SE-70	70 GHz	1.85 mm	
SE-100	100 GHz	1 mm	

Connector Torque


In order to maintain bandwidth performance and minimize loss, connections to the instrument modules should be torqued to the appropriate tightness. The connectors all have standard 3/8 inch nuts on them and should be torqued to 8 in-lbs. using an appropriate torque wrench. The 100 GHz module has a unique connector that requires a smaller torque value of 4 in-lbs. This module is supplied with the appropriate torque wrench.

Optical Modules

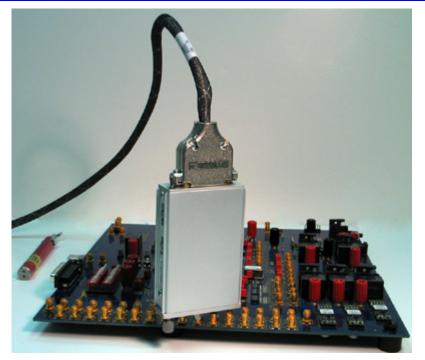

Several optical modules are also available for use with the WaveExpert mainframe. The modules are outlined in the table below. Optical modules are available in single-mode and multimode configurations. The single-mode modules are designed to operate over wavelengths in the 1280 to 1620 nm range, while the multimode module covers the 750 to 1620 nm range. Single-mode and multimode fibers are characterized by different diameters. Multimode fiber, as its name implies, allows many "modes" or group velocities to propagate, while single-mode allows only one. The diameter of multi-mode fiber is much larger than that of single-mode fiber (50 to 62.5 nm vs. 9.5 nm) so connecting a multimode fiber to a single-mode one will result in a large amount of signal attenuation caused by the difference in area of the connector faces. Since the energy in a multimode signal is spread out into the many modes propagating in the fiber, at the boundary with the single-mode fiber only one of these modes will pass through.

Module	Wavelength Range	Fiber Type	Fiber Diameter	
SO50	1280-1620 nm	Single mode	10 µm	
SO25	1280-1620 nm	Single mode	10 µm	
SO10	750-1650 nm	Multimode	62.5 µm	

Single-mode fiber has a narrow core diameter that allows only one mode to propagate. This type of fiber is very low loss, so it is the choice for long-haul communications.

Multimode fiber has a much wider core diameter that allows many modes to propagate. This type of fiber has higher loss, but is less costly, is easier to work with, and is the choice for LAN and other short-haul applications.

The optical modules come standard with an FC-PC connector, and adapters are available for a variety of other optical connector types. Adapters can be easily swapped on the optical module


front panel by pressing the release latch on the bottom of the connector while pulling on it. The exposed fiber end can be cleaned using alcohol and/or an optical fiber cleaner.

Module Extender

The ME-15 Module Extender provides added flexibility to the WaveExpert oscilloscope. By means of its 1.5 m cable, the module extender allows you to connect an electrical module to a device under test (DUT) that is not in immediate proximity to the instrument.

ME-15 Module Extender inserted into channel 1 slot of WaveExpert oscilloscope

Electrical Module connected at far end of extender cable

Each time the ME-15 Module Extender is connected, it must be calibrated from the **Pod Info** dialog by touching the **Calibrate** button:

SAMPLING MODES

There are two sampling modes available on Wave Expert 100H when option WE-HCIS is ordered. The standard sampling mode is sequential (SEQ) and the optional mode is CIS. The sequential or WE-CIS timebase is similar to traditional sampling scopes. The CIS timebase offers powerful capabilities for measuring high speed serial data signals and setting it up is different from the more traditional sequential timebase.

To select a sampling mode

- 1. In the menu bar, touch **Timebase**, then **Horizontal Setup...** in the drop-down menu.
- 2. In the "Horizontal" dialog, touch a **Sample Mode** button. The CIS mode includes several settings that must be made.

Sample Mode	Timebase	Signal Input				
	Time/Division	Var T/div	Si OC-48	gnal Standard)	
CIS	Lelay Set To Zero	Jnits Time	Find Rate	Bit Rate 2.488320 Gbit/s	Ext. Divider] / _1.000]=	Input Clk Rate : 2.488320 GHz
	Max Samples Samples/UI 4.00 MS 512		Find Pattern	Std. Pattern PRBS7	Pat. Length	PLL Bandwidth High

Timebase controls

- Signal Standard this control selects the signal standard being tested. The signal standard selects the compliance mask that will be used in eye mode and sets the bit rate control when the CIS timebase is being used.
- Bit Rate (CIS timebase only) This control sets the bit rate of the signal under test. The rate can be entered directly or set by the signal standard. The Find Rate button is used to lock the timebase automatically to the clock signal applied to the Prescale input. It is recommended that the Find Rate button always be used to set the timebase.
- Ext. Divider (CIS timebase only) this control allows sub rate clock signals to be used at the Prescale input. The number in this control is the ratio of the bit rate to the applied clock. For example, if a 1/8th rate clock is applied to the Prescale input, the value 8 must be entered into the Ext. Divider contol. The Input Clk Rate readout shows the frequency of the applied clock while the Bit Rate contol sets the bit rate of the signal under test.
- Std. Pattern (CIS timebase only) When a pattern locked waveform is required, touch this control and select the standard pattern from the list. Selecting "Custom" from the list allows an arbitrary length to be used. The available memory restricts the maximum length that can be used. The amount of memory required is equal to the pattern length x samples/UI. The following choices are available:
 - o **10**.
 - o **20**.

- o **40**.
- o PRBS5.
- o PRBS7.
- o PRBS9.
- o PRBS10.
- o PRBS11.
- o PRBS15.
- o PRBS23.
- o PCIe Compl.
- FC CJPAT.
- FC CRPAT.
- o Custom.
- Pat. Length (CIS timebase only) this control is active only when "Custom" is selected in from the standard pattern list. Enter the desired pattern length in this control. A value of 1 in this control can be used to view eye patterns on signals without repeating patterns.
- PLL Bandwidth (CIS timebase only) Sets the loop bandwidth of the sampling clock phase locked loop. The low setting results in a loop bandwidth of 10 KHz and timebase jitter of 210 fs while the high setting results in a loop bandwidth of 1 MHz and 500 fs timebase jitter.
- Max Samples (CIS timebase only) Sets the maximum memory available for waveform capture. This control is used to prevent inadvertently setting the timebase to a very long size when turning the time/div knob as long acquisitions can require several minutes to complete. The Max. Samples control setting affects the standard pattern length that can be selected; only those that are compatible with the available memory can be used.
- Samples/UI (CIS timebase only) Sets the number of samples per bit or UI. The choices available are 8, 16, 32, 64, 128, 256, 512, 1024 and 2048.

Note: In some cases, the **Low** setting will result in an apparent increase in the observed jitter in the signal under test. This is because the lower jitter in the timebase allows more of the low frequency jitter in the signal under test to be visible.

Sequential Sampling Mode

The standard mode for sampling the signal is through a technique known as sequential sampling. In this mode, a trigger signal applied to either the trigger or prescale inputs on the scope front panel is used to start the timebase. Once started, the timebase waits for a minimum amount of time before generating the sampling strobe that causes the sampling modules each to take one voltage sample. On each subsequent trigger, the sampling strobe is taken at a time slightly longer than the previous sample after the timebase. The delay difference between each subsequent sample is controlled by the time/division and record length settings.

Coherent Interleaved Sampling Mode

The coherent interleaved sampling (CIS) mode is available with option WE-HCIS and uses the signal applied to the CLK/Prescale input as a reference for an internal with options WE-CIS and WE-HCIS phase locked loop (PLL). The PLL generates a sampling strobe at a nominal 10 MHz rate that is phase locked to the trigger signal. The PLL operates in a fractional-N mode, so the sampling strobe is not an integer sub-multiple of the bit rate. Instead, the sampling rate is set so that the sample point shifts by a fraction of a unit interval for successive sample. This fraction is set by the **Samples/UI** control.

When the instrument is in CIS mode, the colored dot indicator in the Timebase label has the following meanings

Timebase	0.00 ns
CIS 😑	500 ps/div
16.0 kS	310 fs/S

Green -- The timebase is locked.

Red -- The timebase is not locked. The dot turns red when the bit rate is set incorrectly or when the settings are incompatible with CIS mode.

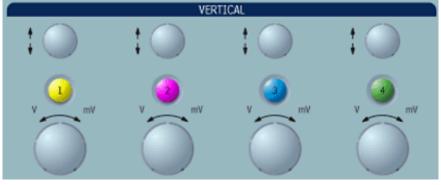
VERTICAL SETTINGS AND CHANNEL CONTROLS

Adjusting Sensitivity and Position

To Adjust Sensitivity

- 1. Press the appropriate channel push button, for example to turn on channel 1. Or touch **Vertical** in the menu bar, then **Channel 1** in the drop-down menu.
- 2. <u>Touch inside</u> the **Trace On** checkbox to display the trace.

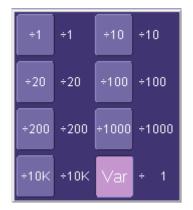
3. Turn the volts per division knob for the selected channel.


Or you can touch inside the **Volts/Div** field and type in a value using the pop-up keypad, or use the up/down arrows.

4. The voltage that you set is displayed in the trace descriptor label and in the **Volts/Div** field.

To Adjust the Waveform's Position

Turn the vertical offset adjust knob directly above the channel button whose waveform you want to move vertically.

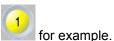

Or you can touch inside the **Offset** field and type in a value on the pop-up keypad. To set the vertical offset to zero, touch the **Zero Offset** button directly below the **Offset** field.

Probe Attenuation

To Set Probe Attenuation

In some cases, external attenuation may be used in from of the channel input connector. The Probe Atten control can be used to enter the amount of external attenuation so that the proper signal level is indicated on the instrument.

- 1. In the menu bar, touch **Vertical**, then select a channel from the drop-down menu.
- 2. Touch inside the **Probe Atten.** field. Touch a divide-by menu selection or touch **Var** (variable). If you choose **Var**, type in a value using the pop-up numeric keypad.



Linear and (SinX)/X Interpolation

Wave Expert acquires a signal in equivalent time sampling mode, so the effective sampling rate is very high. For example, a 10 Gb/s signal with 1024 samples/UI will have a sample spacing equivalent to a 10 THz sampling rate. Normally, interpolation would never be needed. In some cases when a lower number of samples per bit are acquired, interpolation is helpful to view the signal. Selecting SinX interpolation adds 10 samples in between the acquired points using sinx/x interpolation. The default, linear interpolation does not add any additional samples.

To Set Up Interpolation

1. Touch the button for the channel you want to set up,

- 2. In the dialog area, touch inside the **Interpolation** data entry field under **Pre-Processing**. "Pre-Processing" means before Math processing.
- 3. Touch inside the **Interpolation** data entry field. A pop-up menu appears offering **Linear** or **Sinx/x** interpolation.
- 4. Touch the button for the type of interpolation you want.

Inverting Waveforms

Touch the Invert checkbox to invert the waveform for the selected channel.

Operator's Manual

QuickZoom

QuickZoom automatically displays a zoom of the channel or trace on a new grid.

To Turn On a Zoom

Touch the **Zoom** button

in the channel dialog.

Finding Scale

You can access the **Find Scale** button from the channel setup dialog. This feature automatically calculates peak-to-peak voltage, and chooses an appropriate Volts/Div scale to fully display the waveform.

To Use Find Scale

- 1. Touch the trace label for the waveform you desire.
- 2. Touch the Find Scale icon.

Variable Gain

Variable Gain lets you change the granularity with which the gain is incremented. For example, when **Variable Gain** is disabled, the gain will increase or decrease in preset increments of 10 or 100 mV each time you touch the **Up/Down** buttons.

However, when **Variable Gain** is enabled, you can increase or decrease the gain in increments as small as 1 mV, depending on the scale of the waveform.

To Enable Variable Gain

- 1. Touch the descriptor label for the waveform whose gain you want to vary.
- 2. Touch the Variable Gain check box.

Channel Deskew

Unlike the Deskew math function, channel Deskew does no resampling, but instead adjusts the horizontal offset by the amount that you enter. The valid range is dependent on the current timebase +/- 9 divisions.

To Set Up Channel Deskew

- 1. In the menu bar, touch Vertical; from the drop-down menu, select a channel to set up.
- 2. Touch inside the **Deskew** data entry field and enter a value using the pop-up numeric keypad.

Dark Calibration

The **Dark Cal Level** is the residual power measured by the optical head with no input applied (dark input), and is used only by the extinction ratio measurement. The dark calibration is independent of what type of module is connected to the selected channel, so an external optical-to-electrical converter can be compensated.

To perform dark calibration

WE-OM-E Rev A

66

1. In the menu bar, touch **Vertical**, then select a channel from the drop-down menu.

2. Touch the Dark Cal button

- 3. A dialog box will appear instructing you to disconnect any optical signal from the channel. Touch the **Start Dark Calibration** button when this is done.
- 4. Dark calibration will be performed, and the dark level will appear in the **Dark Cal Level** field.

TIMEBASE AND ACQUISITION SYSTEM

Autosetup

The autosetup function operates differently depending upon the operating mode of the instrument. The functions included in autosetup are vertical scaling, setting the bit rate of the signal under test ,and setting the horizontal scale.

You can perform an autosetup of all these functions together by simply pressing Auto SETUP on the

front panel, or by touching **Autosetup** Auto Setup in the Vertical, Timebase, or Trigger drop-down menu. The autosetup operates in the following way for each operating mode:

Scope Mode	Sets the vertical scale to 120% of the signal amplitude, finds the bit rate, and sets the horizontal scale to 1 UI per division (UI = 1/bit rate).
	Sets the vertical scale to 120% of the signal amplitude, finds the bit rate, sets the horizontal scale to 1.66 unit intervals (0.166 UI/division), and sets the UI offset to 0.
	Sets the selected channel to average mode (32 sweeps), the horizontal scale to 100 ps/division, and the trigger to TDR mode (free running)

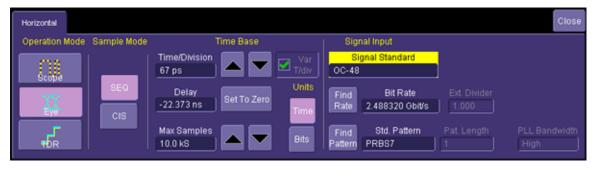
Timebase Setup and Control

Set up the timebase by using the front panel Horizontal controls, just as for analog scopes. The timebase in a sampling oscilloscope such as the WaveExpert is controlled by the trigger signal. Therefore, the sampling rate is set by the trigger signal frequency and is limited by the maximum acquisition rate of approximately 500 kS/s in Sequential mode. The sampling rate is fixed at 10 MS/s in CIS mode. Adjusting the horizontal scale control varies the amount of waveform memory used by the acquisition system.

Touch **Timebase** in the menu bar and then **Horizontal Setup...** in the drop-down menu to display the "Horizontal" menu. The menu consists of 4 sections.

Operation Modes

Operation Modes


The Operation Mode section contains three buttons, which are also available on the instrument front panel in the **Quick Set** control group. Each mode affects the horizontal and vertical menus, as well as the display mode, as appropriate for the selected mode of operation.

Scope Mode

Scope mode is selected by touching the **Scope** button in the "Horizontal" menu or by pressing the Scope button on the instrument front panel in the Quick Set control group. The scope mode displays waveform data directly on the screen either as a voltage vs. time waveform or as an eye pattern, depending upon the trigger type and sampling mode.

Eye Mode

Eye Mode is selected by touching the **Eye** button in the "Horizontal" menu, or by pressing the Eye button on the instrument front panel in the Quick Setup group. When in Eye mode, all channels in the instrument are set to display the eye pattern of their respective signals. Up to four eye patterns sharing the same timebase can be displayed. The horizontal menu changes to reflect the unique functions in the eye mode:

The sample mode control can be set to SEQ or CIS if option WE-HCIS is installed. The controls in the horizontal have the following functions in the eye mode.

- 1. Set the horizontal scale by entering the value in the **Time/Division** field. The up and down arrows increment or decrement the number of UI in steps as fine as 0.5 ps. Note that in the CIS mode, when installed, the maximum horizontal scale is limited to 10 UI.
- 2. Position the eye pattern in the screen by setting the **Delay** value. A positive setting for the delay moves the eye diagram to the left on the screen and a negative value moves the eye pattern to the right. The eye pattern is centered on the screen both vertically and horizontally using the "autosetup" function. Once the auto setup is executed, the eye should be displayed with the crossing points at divisions 2 and 8 and the logical high and low levels at vertical divisions 2.5 and 2.5.
- 3. The **Max Samples** control, in general, has no impact on the acquisition in eye mode with the sequential timebase. The value in this control should be set higher than the number of of samples in the horizontal descriptor box, however. When the CIS timebase is being used, the Max Samples control is unavailable.
- 4. Select **Time** or **Bits** by touching the appropriate button in the menu. The selected scale factor is applied to all measurements on the eye patterns (i.e., UI for Bits and ps for Time).
- 5. Select the signal standard being measured in the **Signal Standard** field. The signal standard sets the value in the **Bit Rate** field and loads any eye pattern masks associated with the standard. The specific mask is selected and enabled in the vertical menu for the selected channel. Note that autosetup is required to configure the instrument for eye pattern measurements on the specific signal being tested.

TDR Mode

TDR mode is selected by touching the **TDR** button in the "Horizontal" menu or by pressing the TDR button on the instrument front panel in the Quick Set control group. This displays the TDR menu tab that appears with the "Horizontal" menu. The acquisition mode is set to Sequential and waveform averaging is enabled (32 sweeps). The "TDR Main" menu provides access to control of the TDR step generators in the ST-20 sampling modules. Only channels that contain ST-20 modules are capable of generating a TDR step. Channels containing other modules or no module will be indicated in the menu with the designation: "Pod has no TDR capabilities" or "Pod is missing."

Horizontal	TDR Main	TDR Norr	nalization				
Setup			On	Polarity	Units		Edge
Calibrate	тр	R1 ——		Pos	γρ	ΩjX	20 ps
Deskew	тр	R2		Neg	γρ	ΩjX	20 ps
Channels	тр	R3 ——	Pod is r	nissing			20 ps
	от р	R4 ——	Pod is n	nissing			20 ps

V (volts)	Displays the sum of the incident and reflected voltages at the sampling diode within the sampling head.
ρ (reflectance)	The vertical scale is the reflection coefficient: V _{reflected} /V _{incident} . varies from 0 (a perfectly matched load with no reflection) to 1 (an open circuit with 100% reflection).
Ω (impedance)	The vertical scale is the characteristic impedance of the network connected to the TDR head. The impedance is determined from the reflectance using the relationship $Z = Z_0 \frac{(1+\rho)}{(1-\rho)}$
jX (reactance)	The display is scaled in volts and parameter P1 indicates the reactance (capacitive or inductive) of the section of the trace between the cursors. The cursors are turned on automatically when jX is selected. The reactance is determined by integrating the voltage between the cursors. A negative area results from the capacitive reactance and a positive area from an inductive one. The reactance is computed from

$$L = \frac{1}{2} \int_{t_1}^{t_2} Z(t) dt$$

for inductance, and

$$C = \frac{1}{2} \int_{t_1}^{t_2} \frac{1}{Z(t)} dt$$

for capacitance. Note that the reactance values are only approximate and do not take into account the affect of multiple reflections from impedance mismatches before the section being measured.

TDR mode allows you to measure time domain reflectometry (TDR) and time domain transmission (TDT) parameters to characterize the signal integrity of your device under test (DUT). TDR/TDT mode measurements are made either for Single-ended or Differential measurements, using an ST-20 (20 GHz TDR module) in any scope channel.

Differential measurements involve a deskew process to adjust the skew between the simultaneously generated steps from two TDR modules. This enables true differential measurements of the DUT.

The TDR main menu allows you to select the channels used and to control the Rise Time of the reflected pulse from the DUT. A calibration wizard guides you through the calibration process, for either single-ended or differential devices, to make TDR and TDT measurements.

The calibrated trace, also referred to as the Normalized trace, can then be adjusted in the TDR Normalization dialog where you can select the measurement format, either Impedance or S-parameter, and adjust the display of the measured parameter.

Cursors can be used to verify the impedance, voltage, and reflection of a selected point on the waveform trace. TDR/TDT cursors are displayed by turning on cursors from the menu bar. The Y-axis markers will then track the waveform at the position determined by the X-axis marker. (See "Measuring with Cursors" in the WaveExpert *Operator's Manual*.)

Required Equipment

- ST-20 module for Single-ended TDR measurements
- Two ST-20 modules for Differential TDR or Single-ended TDT measurements
- Four ST-20 modules for differential TDT
- Calibration kit, which contains precision 50 ohm standards (Short, Load) for calibrated TDR and S-parameter measurements (CALKIT-OSL)
- Either 2.92 mm (K-type) or 3.5 mm cables to connect to the DUT

WE-OM-E Rev A

Operator's Manual

TDR Measurement Procedure

1. Press the **TDR** button in the "Quick Set" group of buttons on the front panel. TDR mode can also be accessed through the timebase menu, and then by selecting TDR from the list of modes. This brings up the menu shown in the following figure.

QUICK SET		OR Main TDR Norr	nalization			
SCOPE	Setup		On Polari	ty Units		Edge
	Calibrate	TDR1	Pos	<u>V</u> ρ	ΩjX	20 ps
IDR	Deskew	TDR2	Veg Neg	V ρ	ΩjX	20 ps
EVE	Channels	TDR3	Pod has no TD	R capabilities		20 ps
		TDR4	Pod has no TD	R capabilities		20 ps

TDR main menu

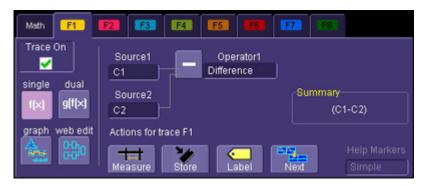
- 2. Insert the ST-20 modules into the corresponding channel slots that you want to use for the measurement.
- 3. The channels containing the ST-20 modules are automatically active in the TDR menu. Clicking the **On** checkbox next to the channels will activate the Step TDR pulse from that channel:

File	Vertical	Timebase	Trigger	Display	Cursors	Measure	Math	Analysis	Utilities	Help		02:	Setup
							;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;						
<u>ç1</u>				~ /~		ىمنىنىن	-‡	;,	·····				
	- John		+i	<u></u>			÷						
	_h~~												
]												
<u>c</u> 2													
¢ C1	AVI		GDSQ				<u>+</u>			Tbase	-18.136 ns	Trigger	TDR
	100 mV/di∖ 200 ps/di∖ 734 ≴	/ 200	m∀/div) ps/div 734 #							SEQ 1.01 kS	200 ps/div 2.0 ps/S	Normal	0 m∀ Positive

TDR Pulses from Channels 1 and 2 on the WaveExpert

Calibrating Modules

Calibration of the modules is required to make valid TDR measurements. The calibration procedure adjusts the amplitude and rise time of the step pulse generated by the TDR module. Module


calibration is available as part of the Calibration feature in TDR mode, which also handles the TDR impedance calibration for the measurement setup.

Single-ended TDR measurements can be made by adjusting the acquisition window, such that the entire time domain response of the DUT is captured on the screen. This can be tested by connecting the channels to the input of the DUT, while leaving the output end either open or connected to a short, then adjusting the timebase such that the Open or Short response at the output of the DUT is also visible on screen.

Number of points in TDR mode can be selected by the "Max Sample Points" control in the **Horizontal** dialog. More points results in better time domain resolution for quantifying device discontinuities, albeit limited by the rise time of the step pulse. Given the 20 ps rise time of the TDR step generator, sufficient resolution must be used in the acquisition system. A time resolution of 2 ps per samples or less is recommended.

Differential TDR measurements will require at least two channels to be selected and turned ON in the TDR setup menu. The two channels need to be deskewed to make accurate differential measurements of the DUT, as described in the next section.

Once the channels are deskewed, a Differential TDR measurement can be made by selecting the **Difference** math function to subtract the responses of the two individual channels to produce a differential response. When making an Impedance measurement, the two individual impedance traces must be added by selecting the **Sum** math function to calculate the Differential Impedance response. Refer to "Waveform Math" in the WaveExpert *Operator's Manual*. The differential response is automatically calculated if a differential Reference Plane calibration is performed, in which case you can skip this step. See **Reference Plane Calibration** section.

Math setup dialog

Deskewing Channels for Differential Measurement

The TDR Deskew Wizard is accessed by means of the **Deskew Channels** selection in the **TDR Main** dialog. The deskew process adjusts the **sampling** and **step** skew between the two channels being used for the Differential TDR measurement.

ACaution

To prevent damage to module and DUT connections, rotate the male threaded connectors, leaving the female connectors stationary, when connecting cables to the modules and to the DUT. Use a torque wrench set to 8 lb.-in. (0.90 Nm).

1. With the ST-20 modules inserted into their channel slots, touch the Deskew Channels button. the TDR Deskew Wizard opens. The initial TDR wizard menu provides a choice of automatic adjustment. Select this control to allow he insrument to automatically perform he deskew. The next step in the procedure for either automatic or manual adjustment instructs the user to connect the channels together. It is most convenient to connect the cable ends at the reference plane that will be connected to the DUT together using an adaptor. This way, the cables can remain on the scope channels throughout the process.

Note: As you perform the Deskew operation, a progress bar lets you know where you are in the procedure with each new pop-up window.

Overview - Step 1 of 7	Adjust Pod skew - Step 2 of 7
This wizard will help you to deskew TDR channels, to make them ready for making differential measurements.	Connect the channels to be deskewed with a short run of cable. Press Next to automatically find the signals.
You will need 1) Short Cable to connect TDR channels 2) Cables that will be used to connect TDR channel to DUT This process could take a while. Do not change any scope controls during this wizard step. In this process, the wizard will automatically adjust skew between channels. Uncheck the following control to use manual adjustment.	Port + C1 Fort- C1
Cancel Next>	Cancel <back next=""></back>

2. Touch inside the "Port-" field to highlight it and, using the pop-up keypad, adjust the skew to

obtain a value of **0** ps. If manual mode is selected, you will be presented with a control menu where the skew is manually adjusted. Touch **Next>** when the Skew is 0 ps.

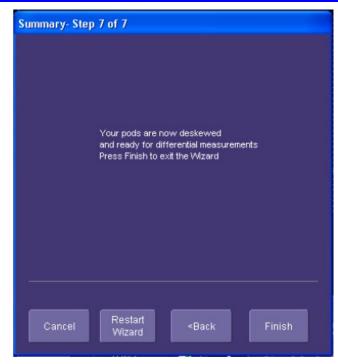
Adjust Pod skew - Step 3 of 7	
Adjust the skew controls until the measured value is 0 ps	
Port + 6.0e-12 Skew Port - <u>-331 ps</u> 6.0e-12	
Cancel <back next=""></back>	ADJUST FINE SELECT

WE-OM-E Rev A

Note: An easier way to adjust the value is to close the pop-up keypad and, with the "Port-" field highlighted, turn the front	ĺ
panel ADJUST knob to set the value.	

3. In the manual deskew mode, adjust the "Channel Skew" to obtain a reading of 0 ps. Touch **Next>** when the Skew is 0 ps.

Adjust channel skew - Step 4 of 7
Adjusting channel skew until the measured value is 0 ps
Channel skew Skew 0 fs -385 ps
Cancel <back next=""></back>


4. The next step in the manual deskew procedure requires you to remove the cable connecting the two modules, and to connect to the modules the two cables that will be connected to the DUT. The free ends of the cables will be left unconnected at this time. Touch **Next>** when ready.

Adjust cable skew - Step 5 of 7
 Disconnect cable connecting the channels to be deskewed Connect the cables that will be used to connect channels to the measured device Leave the end of the cables disconnected Press Next to automatically find the signals. This process could take a while. Do not change any scope controls while the signal search is in progress
Port+
Port-
Cancel <back next=""></back>

5. Again select "Port-" and adjust the skew to 0 ps. When 0 ps is achieved, touch Next>.

Adjust cable skew - Step 6 of	7
Adjust the skew controls is 0 ps	until the measured value
Port + 6.0e-12 Port - 6.0e-12	Skew 0 ps
Cancel	<back next=""></back>

6. This concludes the deskew procedure. Touch **Finish**.

Reference Plane Calibration

Impedance measurements often involve cables, test fixtures, adapters etc. to connect to the test device. The incident step pulse to the device is reduced in amplitude due to the reflections from these components, degrading the accuracy of impedance measurements.

Reflections can be calibrated out of the measurements, using the **Calibration** function in the TDR dialog. A 3.5 mm coaxial calibration kit is available for calibrating connectorized applications.

1. Touch the **Calibrate** button in the TDR dialog to open the TDR Calibration Wizard.

Calil	bration Wizard						
TDR Main	TDR Normalization						
Setup 🕇		On	Polarity	Units		Edge	
Calibrate	TDR1 —	— 🔽	Neg	νρ	jХ	20 ps	
Deskew	TDR2 —	- 🔽	Pos	νρ	jХ	20 ps	
Channels	TDR3 —	— Pod ha	is no TDR (capabilities		20 ps	
	TDR4 —	— Pod ha	s no TDR (capabilities		20 ps	
LeCroy							

TDR Main dialog

2. The first step in the process is to calibrate the amplitude of the TDR modules. Be sure to disconnect any signals (cables may remain in place) from the modules before you touch **Calibrate Modules**. You may choose to skip this step if previously performed through the channel menu.

TDR Calibration V	Vizard	
TDR modules ne Please remove a cables and fixtu Press Calibrate I calibration.	ng with the TDR m ed to be calibrated iny signals from the res can remain cor Modules to start the s step if the moduk recently.	e modules, nnected. e module
	Calibrate Modules	
Cancel		Next>

- 3. Connect the DUT to the TDR modules, then touch Next>.
- 4. The calibration setup menu allows you to select the type of device (Single-ended or

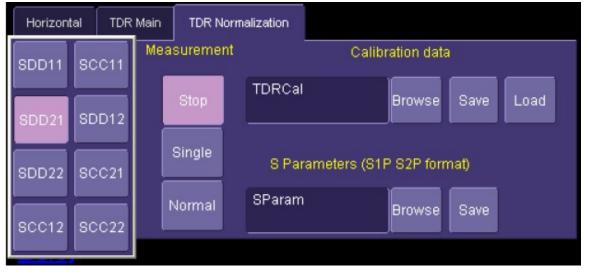
TDR Calibration Wizar	d		
Short Calibration			
	t SHORT to the chann eference plane	nel	
	Reference Plane		
Port 1			
• Port 1 -	SHORT		
C2			
		_	_
Cancel	Restart Wizard	<batk< th=""><th>Next></th></batk<>	Next>

Differential), number of ports (one or two), and the calibration method (SL(T) or OSL(T)).

- 5. Adjust the horizontal position knob such that the second step reflection is within the first two horizontal divisions. Adjust the horizontal scale and position to display the entire response of the DUT. To ensure the response of the DUT is captured, connect a Short to the end of the DUT and adjust the timebase such that the Short measurement is visible within the window of interest. **Press the Set Default Timebase Settings** control to preset the resolution and time length to the default settings. These settings are optimum for a broad range of devices. The default settings are : 40 Ks, 2 ns/div, and 500 fs/sample.
- 6. Select the Calibration kit that will be used for the calibration. A custom calibration kit can be created for PCB-based standards by entering in the coefficients for the Short, Open, and Load standards.

TDR Calibration Wizard
Choose Calibration Standard
Choose the calibration standard that is going to be used to perform calibration. Choosing Custom will allow you to enter or load calibration kit parameters on the next page
Calibration Kit Type Standard masurement method Agilent 3.5mm 85052D One line at a time
·
Cancel Restart «Back Next»

7. Remove the DUT from the setup to perform a calibration at the input plane of the DUT. This is referred to as the REFERENCE PLANE, or the t=0 position. Follow the instructions on the screen (shown in figure below) to connect each of the required precision components (Short, 50Ω) for the calibration.


TDR Colibration Wizard
Short Calibration
Connect SHORT to the channel at the reference plane
Reference Plane
Port 1 C1 SHORT
Port 1 - C2
Cancel Restart «Back Next»

8. Once the calibration is performed, a Normalized trace (blue) is displayed on the screen. The reference plane (t=0) is represented by a cursor line:

Wave Expert

File	Vertical	Timebase	Trigger	Display	Cursors	Measure	Math	Analysis	s Utilities	Help		TD S	etup
							+++++++++++++++++++++++++++++++++++++++						
			– Ref	erence Pla	ane (t=0)								
~	\rightarrow												
TD.							+ + +						
TDRN	12.6 Ω/di 1.00 ns/di	v.								Timebase SEQ 10.0 kS		Trigger Normal	1DR
LeC	1: Troy	*									5/8/2	006 7:39::	23 PM

Calibrated trace

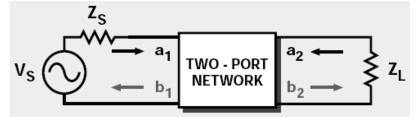
TDR rise time control

- 9. Reconnect the DUT to measure the Impedance response, now designated by the blue Normalized trace.
- 10. Cursor marker and zoom functions can be used on the normalized trace to view the DUT's response.

Operator's Manual

11. The rise time control allows impedance measurements with specific rise times. Generally, increasing the rise time will reduce the impedance variations measured on the instrument display. The rise time can be set from 20 ps to 10 ns.

S-parameters


S-parameters (Scattering parameters) are ratios of power that represent the frequency performance of a device. Due to the advent of high data rates in serial applications, S-parameters have become a common specification, in addition to Jitter, for characterizing performance of serial networks. Typical S-parameter terms include Return Loss, Insertion Loss, and Crosstalk. S-parameters on the WaveExpert are obtained by applying an FFT to the TDR data to convert the time response of a device into its frequency response. The calibration process compensates the measured traces for any imperfections in the TDR system including the cables and connectors between the instrument and the DUT.

Single-Ended S-parameters

S-parameters are depicted as S_{xy} , which denotes the ratio of power at output port x, when an input signal is applied at port y.

For example, a one-port single-ended device has only one S-parameter, S₁₁

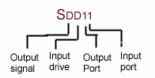
where $S_{11} = b1/a1$ — ratio of output signal (b1) at port 1 when an input stimulus (a1) is applied to port 1, which in time-domain representation is the TDR at port 1 of the device.

All input signals to a test port are designated "a", and all output signals at a port are designated "b".

Similarly, for a two-port single-ended network, there are a total of *four* S-parameters (see figure above):

S₁₁ = b1/a1 (Return Loss at Port 1)

 $S_{21} = b2/a1$ (Insertion Loss of signal from port 1 to port 2)


S₁₂ = b1/a2 (Reverse Insertion Loss from port 2 to port 1)

S₂₂ = b2/a2 (Reverse Return Loss)

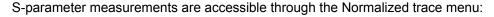
Balanced (Differential & Common mode) S-parameters

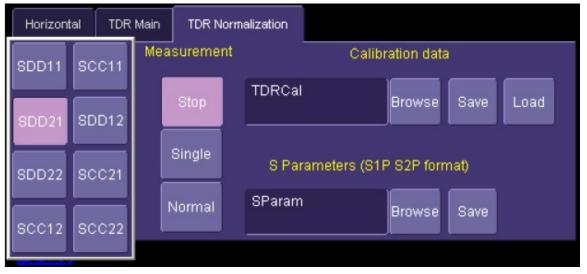
In cases of balanced devices, the stimulus is made up of two ports carrying either common signals (in-phase stimulus) or Differential Signals (out-of-phase stimulus). The ideal mode of operation is to pass all Differential data, while rejecting all common-mode signals.

A Differential TDR measurement on a 1-port device is denoted by

Similarly the Differential S-parameters of a 2-port differential device are given by:

S_{DD11} (Differential Port 1 Return Loss)


S_{DD12} (Differential Reverse Transmission Loss)


S_{DD21} (Differential Forward transmission Loss)

S_{DD22} (Differential Port 2 Return Loss)

Making S-parameter Measurements

A calibration must be performed to enable S-parameter measurements selection. Refer to "Reference Plane Calibration" for the calibration procedure.

Measurement selections under the TDR Normalization tab. Normalized trace can be displayed either as Impedance or the corresponding S-parameter.

Depending on the type of calibration (Single-ended or Differential) and number of ports (one or two), the corresponding s-parameters appear as selections under the TDR Normalization tab.

S-parameters are displayed in decibels (dB) over a 20 GHz frequency range, internally set by the measurement. The trace can be adjusted using the features available in the ZOOM menu.

Saving s-parameters to a file

The measured s-parameters can be stored to a file that can be used by simulations and other software. The file format is called "Touchstone" and has the extension "sNp" where the letter N refers to the number of ports in the measurement. The file is ASCII text containing the measurements along with some header information. This file can be used directly by the Virtual Probe in the Eye Doctor software to simulates system responses. The use of s-parameter files is explained in more detail in the Eye Doctor operators manual.

Horizontal TDR Main TDR No	ormalization				z
Normalized trace	_	Calibration data)		
on	TDRCal	Browse	Save	Load	3
Measurement Edge Time			_		5
Z 150 ps	S Paran	neters (S1P S2P forn	nat))
Format Mag	SParam	Browse			

Saving S-parameter data

1. touch the control under S Parameters (S1P S2P format) and enter the desired file name

2. touch the Browse button to set the directory in which the file will be stored.

3. to save the common mode response, select either SCC11, SCC12, SCC21, or SCC22 in the Measurement control or to save the differential mode response select SDD11, SDD12, SDD21 or SDD22 in the Measurement control

4. touch the Save button

Horizontal TDR Main		TDR Normalization						
SDD11	SCC11	Mea	surement		Calibi	ration data	1	
			Stop	TDRCal		Browse	Save	Load
SDD21	SDD12							
SDD22	SCC21		Single	S Par	ameters (S1F	P S2P form	nat)	
			Normal	SParam		Browse	Save	
SCC12	SCC22							

Saving the calibration data

The calibrations can be saved on the hard disk in the instrument. Generally, as long as the same cables, connectors, and sampling modules are used, the calibrations can be re-used. Note that the module calibration (in the channel menu) is required whenever the instrument is powered up even if you are using stored TDR calibrations. In addition to the calibrations coefficients, the deskew and time base settings are also stored.

- 1. Enter the desired file name in the Calibration Data control.
- 2. touch the Browse button to select the directory in which to store the calibrations
- 3. touch the Save button

Horizontal TDR		Main	TDR Normalization						
SDD11	sc	C11	Mea	surement		Calibr	ration data	1	
				Stop	TDRCal		Browse	Save	Load
SDD21	SD	D12							
SDD22	sc	C21		Single	S Par	ameters (S1F	P S2P form	nat)	
			۱	Jormal	SParam		Browse	Save	
SCC12	SC	C22			-				
	-								

to recall calibration

- 1. touch the Calibrate button in any one of the channel menus if the instrument has been turned on
- 2. touch the Browse button and select the desired file name
- 3. touch the Recall button

Operator's Manual

S-parameter measurement

TRIGGERING

Trigger Setup

Trigger Setup Considerations

Trigger Modes

Auto mode causes the scope to sweep even without a trigger. When there is no trigger signal present at the selected trigger input, the internal clock generates a sampling strobe at a rate of 1M samples per second when the sequential timebase is selected and 10 MS/s when the CIS timebase is selected (if available).

In **Normal** mode, the scope acquires data only when a trigger signal is present at the selected trigger input. Otherwise, it continues to display the last acquired waveform.

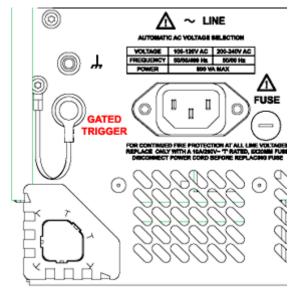
In **Single** mode, the scope will acquire data if a trigger signal is present at the selected trigger input. The scope acquires one sample per trigger in sequential mode until the number of samples indicated in the horizontal descriptor box has been acquired; then the acquisition stops. When the CIS timebase is selected (if available), the selected number of samples is acquired at a 10 MHz sampling rate before the acquisition stops.

Stop mode inhibits all acquisitions until you select one of the other three modes.

Trigger Types

The triggers available to you are defined as follows:

Trigger	Direct trigger. This button selects the Trigger input on the instrument front panel as the timebase trigger. The trigger signal is DC coupled and includes slope and level controls. The Trigger input will respond to trigger signals up to 5 GHz. This input is also used for the CIS timebase only for trigger signals below 125 MHz rate.
, Prescale	This button selects the Prescale input on the instrument front panel as the trigger signal for the timebase. The prescale input is AC coupled and has no level or slope controls. This is also the clock input for the CIS timebase for clock rates above 125 MHz. The Prescale input responds to clock and trigger signals up to 14 GHz
TDR	The TDR trigger is an internal, free-running clock that is used to drive the TDR step generator in the ST-20 module at the same time as the sampling strobe. This button cannot be selected in the trigger menu; rather, it is activated when the TDR mode is selected in the timebase "Horizontal" menu.


Trigger Gate

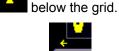
When operating in sequential (SEQ) trigger mode, the WaveExpert oscilloscope allows you to gate the trigger input at the front of the instrument with an external TTL level trigger. Trigger Gate disables the trigger input when "true," i.e., low (below 0.8 V).

To use this feature, you must check the Trigger Gate checkbox in the Trigger dialog:

The Trigger Gate input is located at the rear of the instrument:

Determining Trigger Level, Slope, Source, and Coupling

Level -- Defines the voltage at which the trigger circuit will generate an event and cause a sampling strobe to be generated. This control is only available when the **Trigger** source is selected.


Coupling -- The Trigger input is DC coupled with a 50W load. The Prescale input is AC coupled with a nominal 50W load

Slope -- Determines the direction of the trigger voltage transition used for generating a particular trigger event. You can choose a positive or negative slope. This control is only available when the **Trigger** input is selected.

Control Edge Triggering

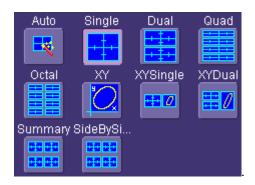
Horizontal: Turn the Delay knob in the HORIZONTAL control group to adjust the trigger's horizontal position. Or, touch inside the **Delay** field in the timebase setup dialog and enter a value, using the pop-up keypad.

The trigger location is shown by a marker

Post-trigger delay is indicated by a left-pointing arrow C1 below-left of the grid. Since the sampling system does not acquire data until a trigger signal is present, the delay can never be positive. The minimum delay for the sequential mode is -12 ns. The CIS timebase runs continuously when a clock is present and has a minimum delay of 0 ps. In this case, the position arrow appears at the left edge of the screen.

Vertical: Turn the **LEVEL** knob in the TRIGGER control group to adjust the trigger's vertical threshold when the trigger signal is applied to the Trigger input. This control knob has no affect when the Prescale input is being used.

Alternatively, in the "Trigger" dialog, you can touch inside the **Level** field and type in a value, using the pop-up numeric keypad. To quickly set a level of zero volts, touch the **Zero Level** button directly below the **Coupling** field.


The trigger source and level are indicated in the trigger descriptor label:

DISPLAY FORMATS

Display Setup

- 1. In the menu bar, touch **Display;** then touch **Display Setup** in the drop-down menu.
- 2. Touch one of the **Grid** combination buttons:

Autogrid automatically adds or deletes grids as you select more or fewer waveforms to display.

Intensity				
Grid Intensity				
40				

3. Touch inside the grid **Intensity** data entry field 40 and enter a value from 0 to 100 using the pop-up keypad

Grid Intensi	Grid Intensity							
			40					
Set to Max.	7	8	9					
Set to Default	4	5	6					
Set to	1	2	3					
Min.		0	+/-					
	Clear	Back	EXP					
		Canc	el	ок				

- 4. Touch the **Grid on top** checkbox if you want to superimpose the grid over the waveform. Depending on the grid intensity, some of your waveform may be hidden from view when the grid is placed on top. To undo, simply uncheck **Grid on top**.
- 5. Touch the **Axis labels** checkbox to permanently display the values of the top and bottom grid lines (calculated from volts/div) and the extreme left and right grid lines (calculated from the timebase).

6. Choose a line style for your trace: solid Line content or Points

Persistence Setup

The analog Persistence feature helps you display your waveform and reveal its idiosyncrasies or anomalies for a repetitive signal. Use Persistence to accumulate on-screen points from many acquisitions to see your signal change over time. The instrument persistence modes show the most frequent signal path "three-dimensionally" in intensities of the same color, or graded in a spectrum of colors.

You can show persistence for up to eight inputs for any channel, math function, or memory location (M1 to M4).

Operator's Manual

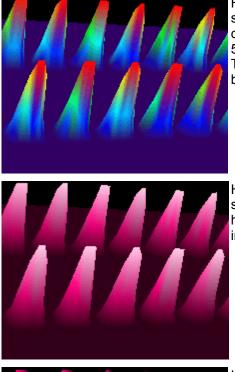
Saturation Level

The Persistence display is generated by repeated sampling of the amplitudes of events over time, and the accumulation of the sampled data into "3-dimensional" display maps. These maps create an analog-style display. User-definable persistence duration can be used to view how the maps evolve proportionally over time. Statistical integrity is preserved because the duration (decay) is proportional to the persistence population for each amplitude or time combination in the data. In addition, the instrument gives you post-acquisition saturation control for a more detailed display.

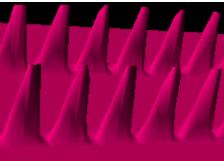
When you select **Constant** mode from the Persistence dialog (with **All Locked** selected), each channel is assigned a single color. As a persistence data map develops, different intensities of that color are assigned to the range between a minimum and a maximum population. The maximum population automatically gets the highest intensity, the minimum population gets the lowest intensity, and intermediate populations get intensities in between these extremes.

The information in the lower populations (for example, down at the noise level) could be of greater interest to you than the rest. The Analog persistence view highlights the distribution of data so that you can examine it in detail.

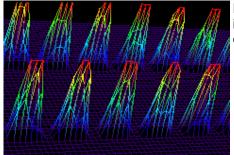
You can select a saturation level as a percentage of the maximum population. All populations above the saturation population are then assigned the highest color intensity: that is, they are saturated. At the same time, all populations below the saturation level are assigned the remaining intensities. Data populations are dynamically updated as data from new acquisitions is accumulated.


Color mode persistence, selected by touching *based*, works on the same principle as the Analog persistence feature, but instead uses the entire color spectrum to map signal intensity: violet for minimum population, red for maximum population. A saturation level of 100% spreads the intensity variation across the entire distribution; at lower saturation levels the intensity will saturate (become the brightest color) at the percentage value specified. Lowering this percentage causes the pixels to be saturated at a lower population, and makes visible those rarely hit pixels not seen at higher percentages.

3-Dimensional Persistence


By selecting **3d** 3d , you can create a topographical view of your waveform from a selection of shadings, textures, and hues. The advantage of the topographical view is that areas of highest and lowest intensity are shown as peaks and valleys, in addition to color or brightness. The shape of the peaks (pointed or flat) can reveal further information about the frequency of occurrences in your waveform.

The instrument also gives you the ability to turn the X and Y axes of the waveform through 180° of rotation from -90° to $+90^{\circ}$.


Here is an example of a 3-dimensional view of a square wave using the **solid** view of color-graded persistence. Saturation is set at 50%, with red areas indicating highest intensity. The X-axis has been rotated 60%; the Y-axis has been rotated 15%.

Here is a **monochrome** (analog) view of the same waveform. The lightest areas indicate highest intensity, corresponding to the red areas in the solid view.

Here is a **shaded** (projected light) view of the same waveform. This view emphasizes the shape of the pulses.

Operator's Manual

Here is a **wire frame** view of the same waveform in which lines of equal intensity are used to construct the persistence map.

Show Last Trace

For most applications, you may not want to show the last trace because it will be superimposed on top of your persistence display. In those cases turn off **Show Last Trace** by touching the checkbox. However, if you are doing mask testing and want to see where the last trace is falling, turn **Show Last Trace** on.

Persistence Time

You can control the duration of persistence by setting a time limit, in seconds, after which persistence data will be erased: 0.5 s, 1 s, 2 s, 5 s, 10 s, 20 s, or infinity.

Locking of Traces

The instrument gives you the choice of constraining all input channels to the same mode, saturation level, persistence time, and last trace display, or setting these for each input channel individually.

All Locked to constrain input channels. Choose Per Trace to set up input

channels individually.

Choose

To Set Up Persistence

- 1. In the menu bar touch **Display**, then touch **Persistence Setup...** in the drop-down menu.
- 2. Touch the Persistence On checkbox. If Per Trace is selected, touch the Reset All button

Reset All

to return all input channel setups to their default settings.

All Locked

3. Touch the **All Locked** button **level**, persistence time, and last trace display for all input channels. Touch the **Per Trace**

Per Trace

button to set these for each input channel individually.

A. If you selected **All Locked**, touch one of the mode buttons:

- B. Then touch the **Show last trace** checkbox if you want the last trace displayed.
- c. Touch inside the **Saturation** data entry field and enter a whole number integer, using the pop-up numeric keypad.
- D. Touch inside the **Persistence time** data entry field and make a selection from the pop-up menu.
- If you selected **Per Trace**, for each input channel touch its tab, then make selections of mode, saturation level, persistence time, and last trace display in the same way as for **All Locked**.

- 5. To create a 3-dimensional view, touch the 3d button . Then
 - A. Touch inside the **Saturation** data entry field and enter a whole number integer, using the pop-up numeric keypad.
 - B. Touch inside the **Persistence time** data entry field and make a selection from the pop-up menu.
 - c. Under "3D settings," touch inside the **Quality** field and select an image quality from the pop-up menu: wire frame, solid, or shaded.
 - D. For each axis, touch inside the data entry field and enter a value from -90° to +90°.
- 6. To turn off persistence for an individual channel, touch the left-most persistence mode button:

To turn off persistence for all channels, press the front panel **ANALOG PERSIST** button. This button toggles Analog Persistence on and off.

Screen Saver

The Windows screen saver is activated in the same way as for any PC.

- 1. Minimize the instrument display by touching **File** in the menu bar, then **Minimize** in the drop-down menu.
- 2. Touch Start down in the task bar.
- 3. Touch **Settings** in the pop-up menu.
- 4. Touch Control Panel.
- 5. Touch **Display**.
- 6. Touch the Screen Saver tab.

Operator's Manual

Moving Traces from Grid to Grid

You can move traces from grid to grid at the touch of a button.

To Move a Channel or Math Trace

1. Touch the descriptor label for the waveform that you want to move.

Example Descriptor Label

Note: If you have more than one waveform displayed on only one grid, a second grid will open automatically when you select **Next Grid**.

Zooming Waveforms

The Zoom button appears as a standard button at the bottom of the channel "Cx Vertical Adjust" setup dialog if you want to create a math function zoom trace of your input waveform. On the other hand, you can zoom a memory or math function non-zoom trace directly without having to create a separate zoom trace. For such traces, a zoom control mini-dialog is provided at the right of each math trace "Fx" setup dialog.

Zoom	Select			Close
Hori	zontal	Verti	cal	
Ce	nter	Cent	ter	
120.0 n:	3	0.0 mV		
Scal	e / div	Scale	/ div	
50.0 ns]	50.0 mV		- AIA - I
x 4.00	🔲 Var.	x 1.00	🔲 Var.	
O in	out	e in	out	Reset Zoom

with.

The front panel "QuickZoom" button **Least** creates multiple zooms, one for each displayed input channel.

At any time, you can also zoom a portion of a waveform by touching and dragging a rectangle around any part of the input waveform. The zoom trace will size itself to fit the full width of the grid. The degree of magnification, therefore, will depend on the size of the rectangle that you create.

When you zoom a waveform, an approximation of the zoomed area will appear in a thumbnail icon in the "Zoom" dialog:

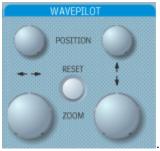
The "Zoom" dialog appears alongside the math setup dialog when Zoom is the math or memory function selected.

To Zoom a Single Channel

1. In the menu bar, touch **Vertical**; then touch a channel number in the drop-down menu. Alternatively, you can just touch the channel trace label for a displayed channel:

Touch the **Zoom** button at the bottom of the "Cx Vertical Adjust dialog." A zoom math trace (one of F5 to Fx) will be created of the selected channel.

- 2. To vary the degree of zoom, touch the newly created Fx trace label. The setup dialog for the math function opens, and the zoom control dialog appears at lower-right. It shows the current horizontal and vertical zoom factors.
- 3. If you want to increase or decrease your horizontal or vertical zoom in small increments, touch the **Var.** <u>checkbox to enable</u> variable zooming. Now with each touch of the zoom


control buttons **in out**, the degree of magnification will change by a small increment. To zoom in or out in large standard increments with each touch of the zoom control buttons, leave the **Var.** checkbox unchecked. To set exact horizontal or vertical zoom factors, touch inside the Horizontal **Scale/div** data entry field and enter a time-per-div value, using the pop-up numeric keypad. Then touch inside the Vertical **Scale/div** field and enter a voltage value.

4. To reset the zoom to x1 magnification, touch **Reset Zoom** in the dialog or press the front panel zoom button:

To Zoom by Touch-and-Drag

- 1. Touch and drag a rectangle around any part of an input channel waveform, math trace, or memory trace. If you have more than one trace displayed, a pop-up "Rectangle Zoom Wizard" will appear.
- 2. If more than one trace is displayed, touch the "Source" tab and select a trace to act on.
- 3. Touch the "Action" tab and select **Create a New Zoom Trace**. You will be offered the choice of creating a new zoom trace or modifying the current trace.
- 4. Touch the **Zoom** tab and select a math function trace to display the zoom.
- 5. Turn the front panel Wavepilot position knobs to adjust the vertical and horizontal position of the zoom

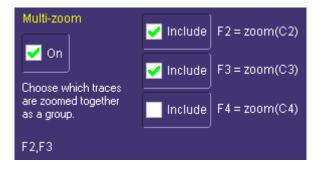
6. Turn the front panel Zoom knobs to control the boundaries of the zoom.

To Zoom Multiple Waveforms Quickly

Press the QuickZoom button **Local** on the front panel. Math function traces **F5** to **F8** will be used to create a zoom of each displayed input channel waveform. Each zoom will be displayed in its own grid.

<u>To Turn Off Zoom</u>

- 1. Touch the math function trace label for the zoom you want to turn off.
- 2. Touch the Trace On checkbox to delete the check mark and disable the zoom trace.


Multi-Zoom

The Multi-zoom feature creates time-locked zoom traces for only the waveforms that you choose to include. The zooms are of the same X-axis section of each waveform. Thus, as you scroll through a waveform, all included zooms scroll in unison.

To Set Up Multi-zoom

- 1. In the menu bar, touch Math, then Math Setup... in the drop-down menu.
- Verify that the math function selected for each Fx position you want to include is zoom. If you need to change the math function for any Fx position, simply touch the Fx button and select Zoom from the Select Math Operator menu.
- 3. Touch the **On** checkbox to display each zoom you want to include in the multi-zoom.

- 4. Touch the Multi-Zoom Setup button. The Multi-Zoom dialog opens.
- 5. Touch the Multi-zoom **On** checkbox to enable Multi-zoom. Then touch the **Include** checkbox for each zoom trace you want to include in the time-locked multi-zoom:

Here the user has chosen to include only F2 and F3 in the Multi-zoom, even though F4 is also a zoom function and is also displayed. Thus, the scrolling feature will not affect zoom F4.

6. Use the **Auto-Scroll** buttons at the right of the Multi-Zoom dialog to control the zoomed section of your waveforms:

To Turn Off Multi-Zoom

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Touch the Multi-Zoom **On** checkbox to turn off Multi-zoom.

XY Display

Use XY displays to measure the phase shift between otherwise identical signals. You can display either voltage on both axes or frequency on both axes. The traces must have the same X-axis. The shape of the resulting pattern reveals information about phase difference and frequency ratio.


To Set Up XY Displays

- 1. In the menu bar, touch **Display**; then touch **Display Setup...** in the drop-down menu.
- 2. Choose an XY display by touching one of the XY display mode buttons

You have the choice of showing the two waveforms on just the XY grid, or you can also show the input waveforms on a single or dual grid.

3. Touch inside the **Input X** and **Input Y** data entry fields and select your input sources from the pop-up menus.

The inputs can be any combination of channels, math functions, and memory locations.

Summary Displays

The summary displays offer an alternative way to view multiple traces in side-by-side windows. This type of display gives more vertical detail at the cost of some horizontal resolution in the display.

- 1. In the menu bar, touch **Display**; then touch **Display Setup** ... in the drop-down menu.
- 2. Choose a summary display by touching one of the summary mode buttons

Summary SideBySi					

You have the choice of a four-quadrant display or a dual, side-by-side display.

SAVE AND RECALL

Saving and Recalling Scope Settings

You can save or recall scope settings to or from hard disk, floppy disk, or LAN location.

To Save Scope Settings

- 1. In the menu bar, touch **File**; then touch **Save Setup...** in the drop-down menu. Or, press the Save/Recall front panel button, then touch the "Save Setup" tab.
- 2. To **Save To File**, touch inside the **Save Instrument Settings** data entry field and use the pop-up keyboard to enter the path to the destination folder. Or touch **Browse** to navigate to

the destination folder. Then touch **Save Now!** below the data entry field. To save to folder **Internal Setups** on the scope's hard drive, touch inside a **SetupX** data entry

field and use the pop-up keyboard to enter a file name. Touch **Save** alongside the data entry field. The file is deposited in **D:\Internal Setups**, and the current date is displayed above the field.

To Recall Scope Settings

- 1. In the menu bar, touch **File**; then touch **Recall Setup...** in the drop-down menu.
- 2. To **Recall From File**, touch inside the **Recall panels from file** data entry field and use the pop-up keyboard to enter the path to the source folder. Or touch **Browse** to navigate to the

∎⇒							
Recall							
Now!							

source folder. Then touch Recall Now!

. To recall settings from folder

Recall

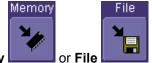
D:\ Internal Setups on the scope's hard drive, touch **Recall** alongside the file you want to recall.

To Recall Default Settings

- 1. In the menu bar, touch File; then touch Recall Setup... in the drop-down menu.
- 2. Touch the button under Recall Default Setup:

The default settings are as follows:						
Vertical	Timebase	Trigger				
100 mV/div	1.00 ns/div	Prescale				
0 V offset	1.0 KS, -12 ns delay					
	Sequential acquisition	Auto trigger mode				

Saving Screen Images


You can send images to a hard copy printer or to storage media. Both types of output are done from the same dialog.

- 1. In the menu bar, touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Hardcopy** tab.
- 3. Touch the **File** button.
- 4. Touch inside the **File Format** field and select a file type.
- 5. Under **Colors**, touch the **Use Print Colors** checkbox if you want your waveforms to print in color with a white background. A white background saves printer toner.
- 6. Touch inside the **Directory** field and type in the path to the directory where you want the image stored, using the pop-up keyboard. Or you can touch the browse button and navigate there.
- 7. Touch inside the **File Name** field and type in a name for your image, using the pop-up keyboard.
- 8. Under **Include On Print**, touch the **Grid Area Only** checkbox if you do not want to include the dialog area in the image.
- 9. Touch the **Print Now** button.

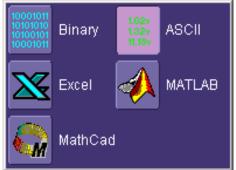
Saving and Recalling Waveforms

Saving Waveforms

1. In the menu bar, touch File; then touch Save Waveform... in the drop-down menu.

- 2. In the "Save Waveform" dialog, touch the **Save To Memory** button.
- 3. Touch inside the **Source** field and select a source from the pop-up menu. The source can be any trace; for example, a channel (C1C4), math function (F1F4), or a waveform stored in non-volatile RAM (M1M4).
- 4. Touch inside the **Trace Title** data entry field if you want to change the default name of your waveforms. Use the pop-up keyboard to type in the new name.

Note: You can change the name but not the sequence number.



104

If you use a name that ends in a number instead of a letter, the instrument may truncate the number. This is because, by design, the first waveform is automatically numbered 0, the second 1, etc. For example, if you want to use waveform name "XYZ32" but it is not preceded by waveforms XYZ0 through XYZ31, the waveform will be renumbered with the next available number in the sequence.

If you need to use a number in your waveform's name, it is recommended that you append an alpha character at the end of the number: "XYZ32a" for example.

5. If you are saving to file, touch the **Data Format** field and select a format type from the pop-up menu:

If you select **ASCII** or **Excel**, also touch the **SubFormat** field and select either **Time Data** or **Time & AmpI**. Then touch the **Delimiter** field and select a delimiter character from the pop-up menu: comma, space, semicolon, or tab.

5. Touch the **Browse** button for the **Save file in directory** field and browse to the location where you want the file saved. The file name is assigned automatically and is shown below the field.

Auto Save

You can also enable Auto Save from this dialog by touching one of the Auto Save buttons:

Wrap (old files overwritten) or Fill (no files overwritten).

If you select Fill, you can quickly use up all disk space on your hard disk.

Recalling Waveforms

1. In the menu bar, touch **File**; then touch **Recall Waveform...** in the drop-down menu.

- 2. In the "Recall Waveform" dialog, touch the Recall From
 - A. If you selected Memory, touch inside the Source field and select a memory location: M1 to M4.
 - B. If you selected **File**, touch inside the **Destination** field and select a memory location in which to store the file.

Touch inside the **Show only files** field and select an area to limit the search to: channels, math functions, or memory.

Touch inside the **Recall files from directory** data entry field and enter the path, using the pop-up keyboard. Or touch the **Browse** button to navigate to the file.

Touch inside the **Next file will be recalled from** data entry field and enter the path, using the pop-up keyboard. Or touch the **Browse** button to navigate to the file.

Disk Utilities

3. Touch

Use the Disk Utilities dialog to delete files or create folders.

To Delete a Single File

1. Touch File in the menu bar, then Disk Utilities... in the drop-down menu.

2. Touch the **Delete** button

in the "Disk Utilities" dialog.

- 3. Touch inside the **Current folder** data entry field and use the pop-up keyboard to enter the path to the folder that contains the file you want to delete. Or touch the **Browse** button and navigate to the folder.
- 4. Touch inside the **File to be deleted** data entry field and use the pop-up keyboard to enter the name of the file. Or touch the **Browse** button and navigate to the file.
- 5. Once you have located the file, touch the **Delete File** button.

To Delete All Files in a Folder

1. Touch File in the menu bar, then Disk Utilities... in the drop-down menu.

- 2. Touch the **Delete** button
- 3. Touch inside the **Current folder** data entry field and use the pop-up keyboard to enter the path to the folder that contains the file you want to delete. Or touch the **Browse** button and navigate to the folder.

in the "Disk Utilities" dialog.

4. Once you have located the folder, touch the **Empty Folder** button.

To Create a Folder

1. Touch File in the menu bar, then Disk Utilities... in the drop-down menu.

- 2. Touch the **Create** button **In the** "Disk Utilities" dialog.
- 3. Touch inside the **Current folder** data entry field and use the pop-up keyboard to enter the path to the directory you want to create the folder in, and the name of the folder.
- 4. Touch the **Create Folder** button.

PRINTING AND FILE MANAGEMENT

Print, Plot, or Copy

The instrument gives you the ability to output files to a printer or plotter, to print to file, or to e-mail your files. Any WindowsXP supported printer is supported by your instrument.

Printing

To Set Up the Printer

- 1. In the menu bar, touch **File**, then **Print Setup...** in the drop-down menu. The Utilities **Hardcopy** dialog opens.
- In the dialog area, touch the Printer icon
- 3. Under **Colors**, touch the **Use Print Colors** checkbox if you want the traces printed on a white background. A white background saves printer toner. (You can change the printer colors in the Preference dialog;)
- 4. Touch inside the **Select Printer** field. From the touch pad pop-up choose the printer you want to print to. Touch the **Properties** button to see your printer setup.
- 5. Touch the icon for the layout **Orientation** you want: portrait or landscape.
- 6. Touch the **Grid Area Only** checkbox if you do not need to print the dialog area and you only want to show the waveforms and grids.

To Print

You can print in one of three ways:

- Press the printer button on the front panel:
- In the menu bar, touch File, then Print in the drop-down menu.
- Touch the **Print Now** button in the "Hardcopy" dialog

Adding Printers and Drivers

Note: If you want to add a printer driver, the driver must first be loaded on the scope.

1. In the menu bar, touch **File**, then **Print Setup...** in the drop-down menu. The Utilities **Hardcopy** dialog opens.

- In the dialog area, touch the Printer icon
- 3. Touch the **Add Printer** button. An MS Windows® window with which to add a printer will open.
- 4. Touch the Properties button to change printer properties such as number of copies.

Changing the Default Printer

- 1. If you want to change the default printer, minimize the instrument application by touching **File** in the menu bar, then **Minimize** in the drop-down menu.
- 2. Touch the **Start** button in the task bar at the bottom of the screen.

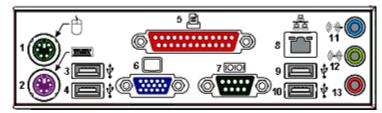
WE-OM-E Rev A

108

- 3. Select **Settings**, then **Printers**.
- 4. Touch the printer you want to set as the default printer, then touch **File, Set as Default Printer**.

Managing Files

Use the instrument's utilities to create waveform files on floppy disk, internal hard drive or network drives. You can copy files from your hard drive to floppy disk. You also can give your files custom names and create directories for them.


Hard Disk Partitions

The instrument's hard disk is partitioned into drive **C**: and drive **D**:. Drive C: contains the Windows operating system and the instrument application software. Drive D: is intended for data files.

100BASE-T ETHERNET CONNECTION

Connecting to a Network

Use the Ethernet connector (item 8 in the rear panel diagram) to connect the instrument to a network.

Communicating over the Network

In its default configuration the instrument is set up to use the DHCP protocol to retrieve its IP address from the network. In cases where a DHCP server is not available on your network, a static IP address can be configured in the Windows Network Settings dialog.

Windows Setups

Instruments that are required to participate in a Windows Network Domain will need to be "joined" to the domain by a network administrator (the procedure typically requires an administrator username and password).

Domain membership is not required to use the instrument on a network, but will generally make it easier to access network shared drive and printer resources.

Guidelines for Working in Windows

Although the instrument has an open architecture, avoid modifying the Windows operating system, since this may cause problems for the instrument's user interface. Please follow these recommendations:

- Do not load any version of Windows not provided by LeCroy. Windows service packs and critical updates are generally safe, and LeCroy does encourage you to install them to keep your scope safe from network-borne viruses and worms. However, LeCroy cannot guarantee that any update distributed by Microsoft will not adversely affect the operation of your instrument. Any compatibility issues detected by LeCroy will be posted on our DSO Security Web site at http://www.lecroy.com/dsosecurity. It is advisable to check this site before applying updates.
- If the instrument powers up in Windows Safe Mode, the touch screen will not function. You may need a mouse or keyboard to restore normal operation.
- Avoid modifying Control Panel settings.
- Do not change the color resolution (24 bit) or screen size (800 x 600 pixel) settings.
- After you load third-party software applications, if your scope does not work properly try reloading the instrument software from the CD shipped with the scope. If your instrument is

not equipped with a CD drive, you will need a USB CD-ROM to do this (not supplied by LeCroy). This does not apply to WaveSurfer or WaveRunner 6000A models, which can be recovered from their internal hard drives.

- Do not modify or remove any system fonts; doing so may affect the readability of the dialogs.
- Do not change any display properties like Background, Appearance, Effects, or Settings. Functionality of the scope or screen saver may be affected.
- Do not make any changes to the Windows folder.
- Do not make any changes to the BIOS settings.
- Do not make any changes to the Windows power management system.

System Restore

Although the scope creates regularly scheduled restore points automatically, before you install any hardware or software on your instrument LeCroy strongly recommends that you manually create a restore point. The restore point resides on the scope's hard drive, so no external storage medium (floppy disk, USB memory stick, etc.) is required.

To Create a Restore Point

- 1. From the **File** menu, minimize or Window the scope display to reveal the task bar.
- 2. In the task bar, select Start, Programs, Accessories, System Tools, System Restore.
- 3. Touch the Create a restore point radio button, then touch Next.
- 4. In the **Restore point description** box, indicate what software or hardware is going to be added after the restore point is created, then touch **Next**.
- 5. The restore point will be created and a confirmation message will be displayed.

TRACK VIEWS

Creating and Viewing a Trend

- 1. In the menu bar, touch **Measure**, then **Measure Setup** in the drop-down menu.
- 2. Touch one of parameter tabs **P1** through **Px**.
- 3. Touch inside the **Source1** data entry field and select an input waveform from the pop-up menu.
- 4. Touch inside the **Measure** data entry field and select a parameter from the pop-up menu.
- 5. Touch the **Trend** button **Trend** at the bottom of the dialog; then, from the **Math selection for Trend** menu, select a math function location (F1 to Fx) to store the Trend display. The Trend will be displayed along with the trace label for the math function you selected.

6. Touch the newly displayed Trend math function trace label if you want to change any settings in the Trend dialog:

Note: Turning off a trace for which trend data is being collected will reset the trend. If it is necessary to continue data collection for the trend, create a zoom trace of the channel trace before turning off the channel trace.

Creating a Track View

This feature is available in the XMAP option.

- 1. In the menu bar, touch **Measure**, then **Measure Setup** in the drop-down menu.
- 2. Touch one of parameter tabs P1 through Px.
- 3. Touch inside the **Source1** data entry field and select an input waveform from the pop-up menu.
- 4. Touch inside the **Measure** data entry field and select a parameter from the pop-up menu.

112

at the bottom of the dialog; then, from the **Math** 5. Touch the **Track** button selection for Track menu, select a math function location (F1 to Fx) to store the Track display. The Track will be displayed along with the trace label for the math function you selected.

6. Touch the newly displayed Track math function trace label if you want to change any settings in the Track dialog:

HISTOGRAMS

Creating and Viewing a Histogram

Note: The number of sweeps comprising the histogram will be displayed in the bottom line of the trace descriptor label:

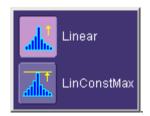
F1 <C1> 100 mV/div 500 ns/div 490 #

To Set Up a Single Parameter Histogram

From Measure Dialog

- 1. In the menu bar, touch Measure, then Measure Setup.
- 2. Touch the **My Measure** button.
- 3. Touch one of tabs **P1** through **Px**.
- 4. Touch inside the **Source1** field and select an input waveform from the pop-up menu.
- 5. Touch inside the **Measure** field and select a parameter from the pop-up menu.
- 6. Touch the **Histogram** button at the bottom of the dialog.
- 7. Touch a math trace in which to place the resulting histogram, then close the pop-up menu.
- 8. Touch the math trace label for the math trace you just created.
- 9. In the dialog to the right, touch the Histogram tab.
- 10. Under "Buffer," touch inside the #Values data entry field and enter a value.
- 11. Under "Scaling," touch inside the #Bins data entry field and enter a value from 20 to 2000.
- 12. Touch the Find Center and Width button to center the histogram. Or touch inside the Center, then the Width, data entry fields and enter a value using the pop-up numeric keypad.

From Math Dialog


- 1. In the menu bar, touch **Math**, then **Math Setup**.
- 2. Touch one of function tabs **F1** through **Fx**. (The number of math traces available depends on the software options loaded on your scope. See specifications.)

- 4. Touch inside the **Source1** field and select a source from the pop-up menu.
- 5. Touch inside the **Measurement** field and select a parameter from the pop-up menu.
- 6. Touch inside the **Graph with** field and select **Histogram** from the pop-up menu.
- 7. In the dialog to the right, touch the **Histogram** tab.
- 8. Under "Buffer," touch inside the **#Values** data entry field and enter a value from 20 to 1000.
- 9. Under "Scaling," touch inside the **#Bins** data entry field and enter a value from 20 to 2000.
- 10. Touch the **Find Center and Width** button to center the histogram. Or touch inside the **Center**, then the **Width**, data entry fields and enter a value using the pop-up numeric

keypad.

11. Touch inside the Vertical Scale field and select **Linear** or **Linear Constant Max** from the pop-up menu

To View Thumbnail Histograms

Histicons are miniature histograms of parameter measurements that appear below the grid. These thumbnail histograms let you see at a glance the statistical distribution of each parameter.

- 1. In the menu bar, touch **Measure**, then one of the Measure Mode buttons: **Std Vertical**, **Std Horizontal**, or **My Measure**.
- 2. Touch the **Histicons** checkbox to display thumbnail histograms below the selected parameters.

Note: For measurements set up in My Measure, you can quickly display an enlarged histogram of a thumbnail histogram by touching the Histicon you want to enlarge. The enlarged histogram will appear superimposed on the trace it describes. This does not apply to "Std Vertical" or "Std Horizontal" measurements.

Persistence Histogram

You can create a histogram of a persistence display also by cutting a horizontal or vertical slice through the waveform. You also decide the width of the slice and its horizontal or vertical placement on the waveform.

This math operation is different than the "Histogram" math operation and is not affected by **Center** and **Width** settings made there.

To Set Up Persistence Histograms

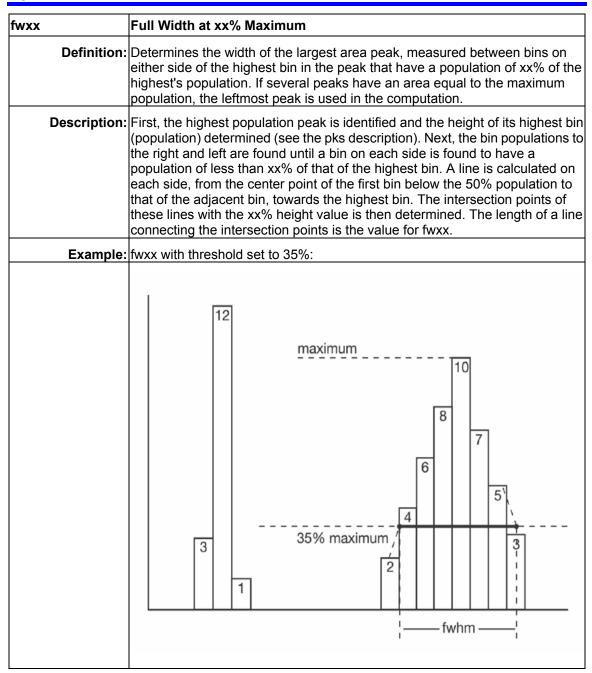
- 1. In the menu bar, touch Math, then Math Setup.
- 2. Touch one of function tabs **F1** through **Fx**. (The number of math traces available depends on the software options loaded on your scope. See specifications.)
- 3. Touch inside the **Source1** field and select a source from the pop-up menu.
- 4. Touch inside the **Operator1** field and select **Phistogram** from the **Select Math Operator** menu.
- 5. Touch the "Phistogram" tab, then touch inside the Slice Direction field and select **Horizontal** or **Vertical** slice from the pop-up menu.
- 6. Touch inside the **Slice Center** field and enter a value, using the pop-up keypad.
- 7. Touch inside the **Slice Width** field and enter a value, using the pop-up keypad.

Note: You can use the front panel Adjust knobs to move the Slice Center line and the Slice Width boundary lines.

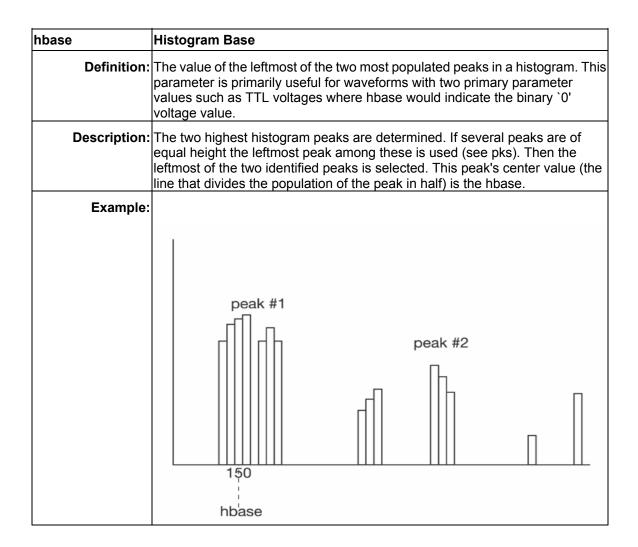
Persistence Trace Range

This math operation has a field where you can enter the percent of the persistence trace population to use in creating a new waveform.

Persistence Sigma

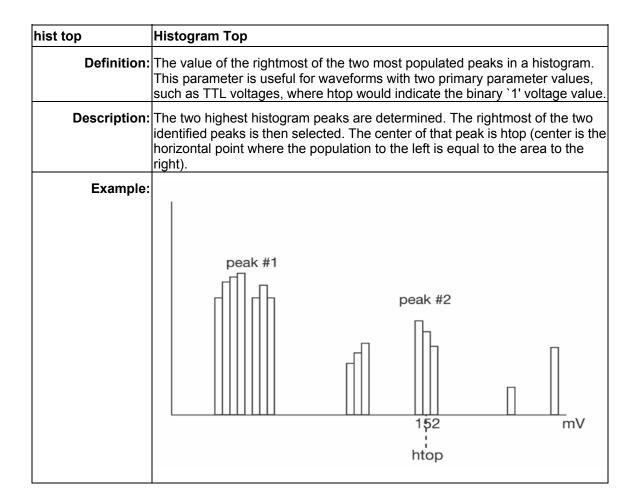

This math operation has a field where you can enter a scale, measured in standard deviations, by which to create a new waveform.

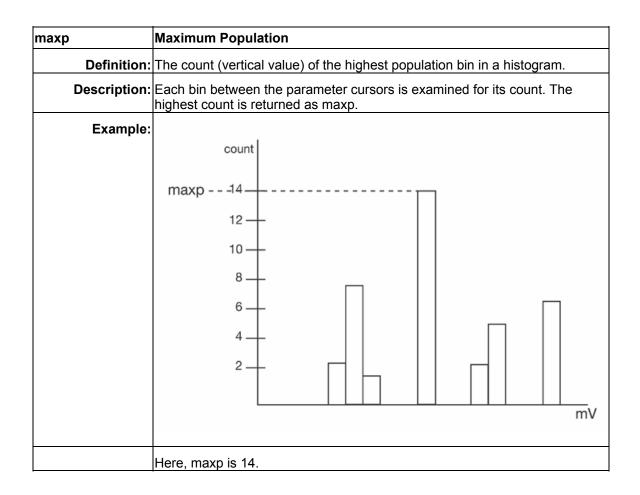
	etermines the width of the largest area peak, measured between bin						
	Determines the width of the largest area peak, measured between bins on either side of the highest bin in the peak that have a population of half the highest's population. If several peaks have an area equal to the maximum population, the leftmost peak is used in the computation.						
	First, the highest population peak is identified and the height of its highest bin (population) determined (for a discussion on how peaks are determined see the pks parameter Description:). Next, the populations of bins to the right and left are found, until a bin on each side is found to have a population of less than 50% of that of the highest bin's. A line is calculated on each side, from the center point of the first bin below the 50% population to that of the adjacent bin, towards the highest bin. The intersection points of these lines with the 50% height value is then determined. The length of a line connecting the intersection points is the value for fwhm.						
Example:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 <tr< td=""><td></td></tr<>						


Histogram Parameters

WE-OM-E Rev A

117

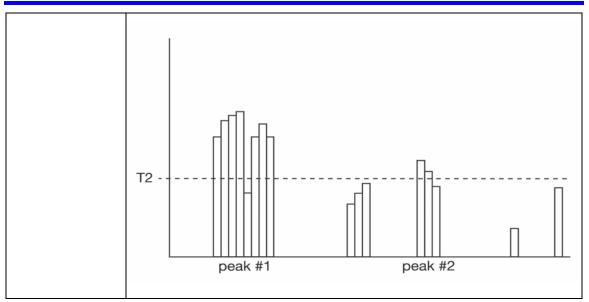



hist ampl	Histogram Amplitude							
Definition:	The difference in value of the two most populated peaks in a histogram. This parameter is useful for waveforms with two primary parameter values, such as TTL voltages, where hampl would indicate the difference between the binary `1' and `0' voltage values.							
Description:	The values at the center (line dividing the population of peak in half) of the two highest peaks are determined (see pks parameter description:). The value of the leftmost of the two peaks is the histogram base (see hbase). While that of the rightmost is the histogram top (see htop). The parameter is then calculated as:							
	hampl = htop - hbase							
Example:	$ \begin{array}{c} $							
	In this histogram, hampl is 152 mV - 150 mV = 2 mV.							

hist rms	Histogram Root Mean Square						
Definition:	The rms value of the values in a histogram.						
	The center value of each populated bin is squared and multiplied by the population (height) of the bin. All results are summed and the total is divided by the population of all the bins. The square root of the result is returned as hrms.						
Example:	Using the histogram shown here, the value for hrms is:						
	hrms = $\sqrt{(3.5^2 * 2 + 2.5^2 * 4)/6} = 2.87$						
	count 4 3 2 1 1 2.5 3.5 value						
	2.5 3.5 value						

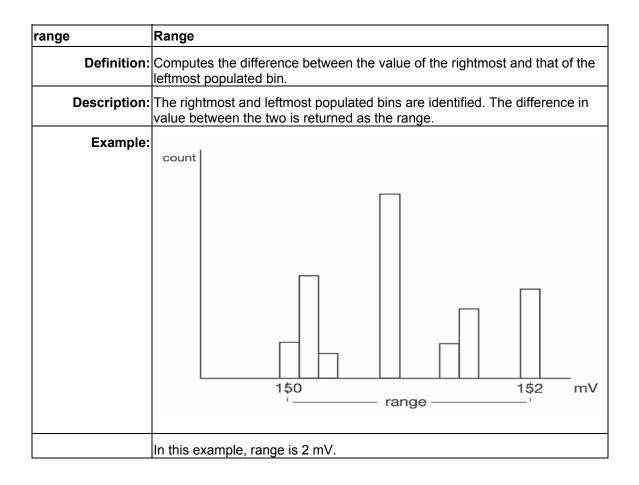
121

Operator's Manual


mode	Mode						
Definition:	he value of the highest population bin in a histogram.						
_	Each bin between the parameter cursors is examined for its population count. The leftmost bin with the highest count found is selected. Its center value is eturned as mode.						
Example:	count						
	14						
	12						
	10						
	8						
	150 mV møde						
	Here, mode is 150 mV.						

pctl	Percentile
Definition:	Computes the horizontal data value that separates the data in a histogram such that the population on the left is a specified percentage `xx' of the total population. When the threshold is set to 50%, pctl is the same as hmedian.
Description:	The total population of the histogram is determined. Scanning from left to right, the population of each bin is summed until a bin that causes the sum to equal or exceed `xx'% of the population value is encountered. A ratio of the number of counts needed for `xx'% population/total bin population is then determined for the bin. The horizontal value of the bin at that ratio point of its range is found, and returned as pctl.
Example:	The total population of a histogram is 100. The histogram range is divided into 20 bins and `xx' is set to 25%. The population sum at the sixth bin from the left is 22. The population of the seventh is 9 and its sub-range is 6.1 to 6.4 V. The ratio of counts needed for 25% population to total bin population is:
	3 counts needed / 9 counts = 1/3.
	The value for pctl is:
	6.1 volts + .33 * (6.4 - 6.1) volts = 6.2 volts.

WE-OM-E Rev A


pks	Peaks				
Definition:	The number of peaks in a histogram.				
Description:	on: The instrument analyzes histogram data to identify peaks from background noise and histogram binning artifacts such as small gaps.				
	Peak identification is a 3-step process:				
	 The mean height of the histogram is calculated for all populated bins. A threshold (T1) is calculated from this mean, where: 				
	T1= mean + 2 sqrt (mean).				
	A second threshold is determined based on all populated bins under T1 in height, where:				
	T2 = mean + 2 * sigma,				
	and where sigma is the standard deviation of all populated bins under T1.				
	3. Once T2 is defined, the histogram distribution is scanned from left to right. Any bin that crosses above T2 signifies the existence of a peak. Scanning continues to the right until one bin or more crosses below T2. However, if the bins cross below T2 for less than a hundredth of the histogram range, they are ignored, and scanning continues in search of peaks that cross under T2 for more than a hundredth of the histogram range. Scanning goes on over the remainder of the range to identify additional peaks. Additional peaks within a fiftieth of the range of the populated part of a bin from a previous peak are ignored.				
	NOTE: If the number of bins is set too high, a histogram may have many small gaps. This increases sigma and, thereby, T2. In extreme cases, it can prevent determination of a peak, even if one appears to be present to the eye.				
Example:	Here the two peaks have been identified. The peak with the highest population is peak #1.				

127

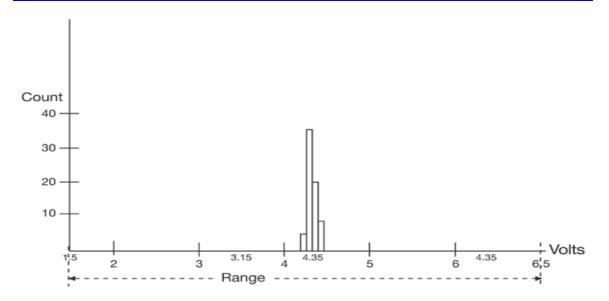
Operator's Manual

totp	Total Population						
Definition:	Calculates the total population of a histogram between the parameter cursors.						
Description:	The count for all populated bins between the parameter cursors is summed.						
Example:	$ \begin{array}{c} 5 \\ Count \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$						
	The total population of this histogram is 9.						

xapk	X Coordinate of xx th Peak						
Definition:	Returns the value of the xx th peak that is the largest by area in a histogram.						
Description:	First the peaks in a histogram are determined and ranked in order of total area (for a discussion on how peaks are identified see the description for the pks parameter). The center of the n th ranked peak (the point where the area to the left is equal to the area to the right), where n is selected by you, is then returned as xapk.						
Example:	The rightmost peak is the largest, and is thus ranked first in area (1). The leftmost peak, although higher, is ranked second in area (2). The lowest peak is also the smallest in area (3).						
	Largest-area peak						

Histogram Theory of Operation

An understanding of statistical variations in parameter values is needed for many waveform parameter measurements. Knowledge of the average, minimum, maximum, and standard deviation of the parameter may often be enough, but in many cases you may need a more detailed understanding of the distribution of a parameter's values.


Histograms allow you to see how a parameter's values are distributed over many measurements. They do this by dividing a range of parameter values into sub-ranges called bins. A count of the number of parameter values (events) that fall within ranges of the bin itself is maintained for each bin.

While such a value range can be infinite, for practical purposes it need only be defined as large enough to include any realistically possible parameter value. For example, in measuring TTL high-voltage values a range of ± 50 V is unnecessarily large, whereas one of 4 V ± 2.5 V is more reasonable. It is the 5 V range that is then subdivided into bins. And if the number of bins used were 50, each would have a range of 5 V/50 bins or 0.1 V/bin. Events falling into the first bin would then be between 1.5 V and 1.6 V. While the next bin would capture all events between 1.6 V and 1.7 V, and so on.

After a process of several thousand events, the bar graph of the count for each bin (its histogram) provides a good understanding of the distribution of values. Histograms generally use the 'x' axis to show a bin's sub-range value, and the 'Y' axis for the count of parameter values within each bin. The leftmost bin with a non-zero count shows the lowest parameter value measurements. The vertically highest bin shows the greatest number of events falling within its sub-range.

Note: The range of the histogram is limited to the portion of the trace that is visible on screen. That is, if you zoom in on a trace, the histogram will not contain data for that part of the original trace no longer visible.

The number of events in a bin, peak or a histogram is referred to as its population. The following figure shows a histogram's highest population bin as the one with a sub-range of 4.3 to 4.4 V (which is to be expected of a TTL signal).

The lowest-value bin with events is that with a sub-range of 3.0 to 3.1 V. As TTL high voltages need to be greater than 2.5 V, the lowest bin is within the allowable tolerance. However, because of its proximity to this tolerance and the degree of the bin's separation from all other values, additional investigation may be required.

DSO Process

The instrument generates histograms of the parameter values of input waveforms. But first, you must define the following:

- The parameter to be histogrammed.
- The trace on which the histogram is to be displayed .
- The maximum number of parameter measurement values to be used in creating the histogram.
- The measurement range of the histogram.
- The number of bins to be used.

Some of these are pre-defined but can be changed. Once they are defined, the oscilloscope is ready to make the histogram. The sequence for acquiring histogram data is as follows:

- 1. Trigger.
- 2. Waveform acquisition.
- 3. Parameter calculations.
- 4. Histogram update.
- 5. Trigger re-arm.

If you set the timebase for non-segmented mode, a single acquisition occurs prior to parameter calculations. However, in Sequence mode an acquisition for each segment occurs prior to parameter calculations. If the source of histogram data is a memory, saving new data to memory

effectively acts as a trigger and acquisition. Because updating the screen can take much processing time, it occurs only once a second, minimizing trigger dead time. Under remote control the display can be turned off to maximize measurement speed.

Parameter Buffer

The oscilloscope maintains a circular parameter buffer of the last 20,000 measurements made, including values that fall outside the set histogram range. If the maximum number of events to be used for the histogram is a number 'N' less than 20,000, the histogram will be continuously updated with the last 'N' events as new acquisitions occur. If the maximum number is greater than 20,000, the histogram will be updated until the number of events is equal to 'N.' Then, if the number of bins or the histogram range is modified, the scope will use the parameter buffer values to redraw the histogram with either the last 'N' or 20,000 values acquired -- whichever is the lesser. The parameter buffer thereby allows histograms to be redisplayed, using an acquired set of values and settings that produce a distribution shape with the most useful information.

In many cases the optimal range is not readily apparent. So the scope has a powerful range finding function. If required it will examine the values in the parameter buffer to calculate an optimal range and redisplay the histogram using it. The instrument will also give a running count of the number of parameter values that fall within, below, or above the range. If any values fall below or above the range, the range finder can then recalculate to include these parameter values, as long as they are still within the buffer.

Capture of Parameter Events

The number of events captured per waveform acquisition or display sweep depends on the parameter type. Acquisitions are initiated by the occurrence of a trigger event. Sweeps are equivalent to the waveform captured and displayed on an input channel (1, 2, or 3 or 4). For non-segmented waveforms an acquisition is identical to a sweep. Whereas for segmented waveforms an acquisition occurs for each segment and a sweep is equivalent to acquisitions for all segments. Only the section of a waveform between the parameter cursors is used in the calculation of parameter values and corresponding histogram events.

The following table provides a summary of the number of histogram events captured per acquisition or sweep for each parameter, and for a waveform section between the parameter cursors.

Parameters	Number of Events Captured
duty, freq, period, width, time@lev, f@level, f80-20%, fall, r@level, r20-80%, rise	All events in the acquisition
ampl, area, base, cmean, cmedian, crms, csdev, cycles, delay, maximum, mean, minimum, nbph, nbpw, over+, over-, pkpk, npts, rms, sdev, dly	

Histogram Parameters

Once a histogram is defined and generated, measurements can be performed on the histogram itself. Typical of these are the histogram's:

- average value, standard deviation.
- most common value (parameter value of highest count bin).
- leftmost bin position (representing the lowest measured waveform parameter value).
- rightmost bin (representing the highest measured waveform parameter value).

Histogram parameters are provided to enable these measurements. Available through selecting "Statistics" from the "Category" menu, they are calculated for the selected section between the parameter cursors:

fwhm full width (of largest peak) at half the maximum bin.

fwxx full width (of largest peak) at xx% the maximum bin.

hist ampl histogram amplitude between two largest peaks.

hist base histogram base or leftmost of two largest peaks.

hist max value of the highest (right-most) populated bin in a histogram.

hist mean average or mean value of data in the histogram.

hist median value of the x-axis of a histogram that divides the population into two equal halves.

hist min value of the lowest (left-most) populated bin in a histogram.

hist rms rms value of data in histogram.

hist sdev standard deviation of values in a histogram.

hist top histogram top or rightmost of two largest peaks.

max populate population of most populated bin in histogram.

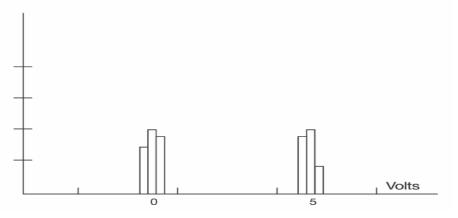
mode data value of most populated bin in histogram.

percentile data value in histogram for which specified `x'% of population is smaller.

peaks number of peaks in histogram.

pop @ x population of bin for specified horizontal coordinate.

range difference between highest and lowest data values.


total pop total population in histogram.

x at peak x-axis position of specified largest peak.

Histogram Peaks

Because the shape of histogram distributions is particularly interesting, additional parameter measurements are available for analyzing these distributions. They are generally centered around one of several peak value bins, known, with its associated bins, as a histogram peak.

Example: In the following figure, a histogram of the voltage value of a five-volt amplitude square wave is centered around two peak value bins: 0 V and 5 V. The adjacent bins signify variation due to noise. The graph of the centered bins shows both as peaks.

Determining such peaks is very useful because they indicate dominant values of a signal.

However, signal noise and the use of a high number of bins relative to the number of parameter values acquired, can give a jagged and spiky histogram, making meaningful peaks hard to distinguish. The scope analyzes histogram data to identify peaks from background noise and histogram definition artifacts such as small gaps, which are due to very narrow bins.

Binning and Measurement Accuracy

Histogram bins represent a sub-range of waveform parameter values, or events. The events represented by a bin may have a value anywhere within its sub-range. However, parameter measurements of the histogram itself, such as average, assume that all events in a bin have a single value. The scope uses the center value of each bin's sub-range in all its calculations. The greater the number of bins used to subdivide a histogram's range, the less the potential deviation between actual event values and those values assumed in histogram parameter calculations.

Nevertheless, using more bins may require that you perform a greater number of waveform parameter measurements, in order to populate the bins sufficiently for the identification of a characteristic histogram distribution.

In addition, very fine grained binning will result in gaps between populated bins that may make it difficult to determine peaks.

The oscilloscope's 20,000-parameter buffer is very effective for determining the optimal number of bins to be used. An optimal bin number is one where the change in parameter values is insignificant,

Operator's Manual

and the histogram distribution does not have a jagged appearance. With this buffer, a histogram can be dynamically redisplayed as the number of bins is modified by the user. In addition, depending on the number of bins selected, the change in waveform parameter values can be seen.

WAVEFORM MEASUREMENTS

Measuring with Cursors

Cursors are important tools that aid you in measuring signal values. Cursors are markers — lines, cross-hairs, or arrows — that you can move around the grid or the waveform itself. Use cursors to make fast, accurate measurements and to eliminate guesswork. There are two basic types:

- **Horiz(ontal)** (generally Time or Frequency) cursors are markers that you move horizontally along the waveform. Place them at a desired location along the time axis to read the signal's amplitude at the selected time.
- **Vert(ical)** (Voltage) cursors are lines that you move vertically on the grid to measure the amplitude of a signal.

Cursor Measurement Icons

The **Readout** icons depict what is being measured for each measurement mode.

Each cursor locates a point on the waveform. The cursor values can be read in the descriptor label for the trace. Use the Position data entry fields at the right side of the dialog to place the cursors precisely.
This is the difference in Y values. The value can be read in the descriptor label for the trace.
Displays absolute and delta cursors together.
This gives the slope between cursors.

If there are non-time-domain waveforms displayed, there will also be a menu offering choices of x-axis units: s or Hz, for example.

Cursors Setup

Quick Display

At any time, you can change the display of cursor types (or turn them off) without invoking the "Cursors Setup" dialog as follows:

- 1. In the menu bar, touch Cursors, then Off, Abs Horizontal, Rel Horizontal, Abs Vertical, or Rel Vertical.
- 2. The cursors displayed will assume the positions previously set up. If you want to change their position or measurement mode, in the menu bar touch **Cursors**, then **Cursors Setup** in the drop-down menu.

Operator's Manual

Full Setup

- 1. In the menu bar, touch **Cursors**, then **Cursors Setup**. The "Standard Cursors" dialog opens.
- 2. In the dialog area, touch the **Cursors On** check box to display them.
- 3. Touch one of the Horizontal or Vertical mode buttons: Relative or Absolute.
- 4. If you chose a Relative mode, also touch a readout parameter button: Y position, delta Y, or slope.
- 5. If you chose a Relative mode, touch inside the **Position 1** and **Position 2** data entry fields and type in a value for each cursor. You can also use the Cursors knobs on the front panel to place the cursors. If you chose an Absolute mode, do the same for your single cursor.
- 6. If you chose a Relative mode and you would like both cursors to move in unison as you adjust the position, touch the **Track** check box to enable tracking.

Overview of Parameters

Parameters are measurement tools that determine a wide range of waveform properties. Use them to automatically calculate many attributes of your waveform, like rise-time, rms voltage, and peak-to-peak voltage, for example.

There are parameter modes for the amplitude and time domains, custom parameter groups, and parameters for pass and fail testing. You can make common measurements on one or more waveforms.

To Turn On Parameters

- 1. Touch **Measure** in the menu bar, then **Measure Setup...** in the drop-down menu.
- 2. Touch inside the **On** checkbox for each parameter you want to display.

Quick Access to Parameter Setup Dialogs

You can quickly gain access to a parameter setup dialog by touching the parameter list box below

Measure	P1:(P2+P3)	
value		
status		displays

the grid. For example, touching within **P1** below the grid the setup dialog for P1:

Measure	P1	P2	P3	P4	P5	P6	P7	P8	
₩a wa + - × +	Measurement Type Measure on waveforms + - math on barameters				P+Pm F) mmary—	2+P3)	
<u>LeCro</u> y									
		Me a Valu stati			P1:ampl(295.6				

Touching the row titles

displays the top Measure dialog.

Status Symbols

Below each parameter appears a symbol that indicates the status of the parameter, as follows:

A	A warning symbol indicates that there is something wrong with the signal or the setup. Touch the parameter list box and read the explanation in the message line at the bottom of the screen.
×	A green check mark means that the scope is returning a valid value.
ж	A crossed-out pulse means that the scope is unable to determine top and base; however, the measurement could still be valid.
浅作	A downward pointing arrow indicates an underflow condition.
风企	An upward pointing arrow indicates an overflow condition.
X 0	An upward-and-downward pointing arrow indicates an underflow and overflow condition.

Using X-Stream Browser to Obtain Status Information

Example:

Here is a case of an overflow condition, in which the amplitude of the waveform cannot be determined:

Operator's Manual

File	Vertical	Timebase	Trigger	Display	Cursors	Measure	Math A	Analysis Utilit	ies Help	P1:	Setup
			· · · · ·				• • • •				
Measu value status C2	0550	P1:ampl(C) > 289 m)X(1	V 999.	eq(C2) 398 Hz X		. P			Bitten State	0.00 ms Trigge	
	50.0 mV/div 0 V offset								100 kS	2.00 ms/div Stop 5.0 MS/s Edge	121.5 mV Positive

1. Minimize the scope display by selecting File Minimize.

- 2. Touch the **X-Stream Browser** desktop icon ^{Browser} to open the browser.
- 3. Touch the left scope icon ("Connect to a local X-Stream DSO device") in the X-Stream Browser toolbar:

4. Select Measure Parameter in error (P1) Out Result:

Wave Expert

XStream Browser - Onlin File Edit <u>H</u> elp	e, br	owsing LeCroy.XStreaml	D50	
in in 2				
E LeCroy.XStreamDSO		Name	Value	Туре
🕀 🚞 Acquisition		ExtendedStatus	0	Property
🗄 📄 Cursors		FirstEventTime	10699933597047.0523	Property
🗄 📄 CustomDSO		HorizontalResolution	0.00000000001	Property
🗄 🛅 Display		HorizontalUnits	S	Property
		LastEventTime	10699933597047.0523	Property
⊡ Help		NumFrameDimensions	2	Property
⊡ <u> </u>		Status	0.0098	Property
		StatusDescription	Data overflow, Greater than, Not a pulse.	Property
🖃 🛄 Measure		UpdateTime	10699933598577.582	Property
🕀 🏾 🌉 Measure		Value	0.289474614623108	Property
🖻 ·· 🦲 P1		ValueArray	(Array)	Property
🕀 🧰 Operator		VerticalResolution	2.20972988261915E-03	Property
🖃 🧰 Out		VerticalUnits	V	Property
😟 🌆 Result				
+ 🗑 Statistics				
⊕ 📄 P2				

5. Read the status information in line **StatusDescription**.

Statistics

By touching the **Statistics On** checkbox in the "Measure" dialog, you can display statistics for standard vertical or horizontal parameters, or for custom parameters. The statistics that are displayed are as follows:

value (last)
mean
min.
max.
sdev
num

The values displayed in the **num** row is the number of measurements computed. For any parameter that computes on an entire waveform (like edge@level, mean, minimum, maximum, etc.) the value displayed represents the number of sweeps.

For any parameter that computes on every event, the value displayed is equal to the number of events per acquired waveform. If *x* waveforms were acquired, the value represents *x* times the number of cycles per waveform. Also, the "value" is equal to the measurement of the last cycle on

WE-OM-E Rev A

Operator's Manual

the last acquisition.

To Apply a Measure Mode

- 1. In the menu bar, touch Measure, then Measure Setup.
- 2. Choose a **Measure Mode** from the dialog. The parameters are displayed below the grid.

Measure Modes

The selections for Measure Mode allow you to quickly apply parameters for standard vertical and standard horizontal setups, and custom setups.

Standard Vertical Parameters

These are the default Standard Vertical Parameters:

Vertical			
mean			
sdev			
max.			
min.			
ampl			
pkpk			
top			
base			

Standard Horizontal Parameters

These are the default Standard Horizontal Parameters:

Horizontal
freq
period
width
rise
fall
delay
duty
npoints

My Measure

You can choose to customize up to eight parameters by touching My Measure.

Parameter Math (WE-XMAP option required)

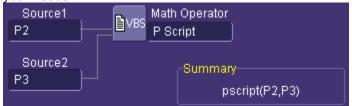
The instrument gives you the ability to perform arithmetic operations (addition, subtraction, multiplication, division) on the results of two parameter measurements. Alternatively, you can apply math to a single parameter (for example, invert). By customizing parameters in this way, you can effectively extend the range of parameter measurements based on your particular needs.

Logarithmic Parameters

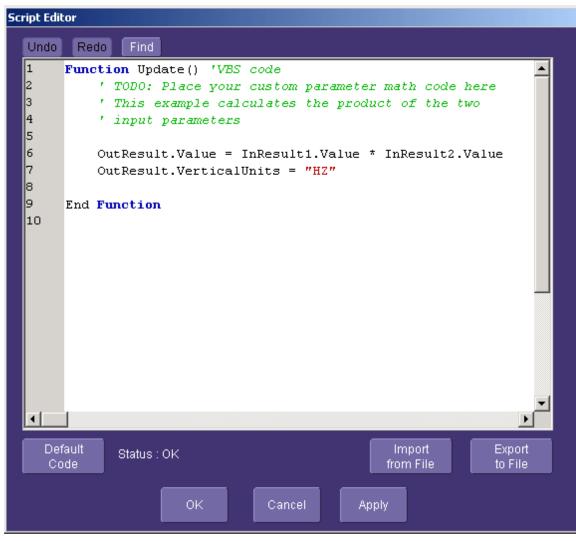
The parameter math feature prevents multiplication and division of parameters that return logarithmic values. These parameters are as follows:

- narrow-band power (NBPW)
- top-to-base ratio when the units are in dB (TBR)

Excluded Parameters


Parameters that are already the result of parameter math operations are excluded. If they are included in a remote control setup command, an error message is generated and the setup canceled.

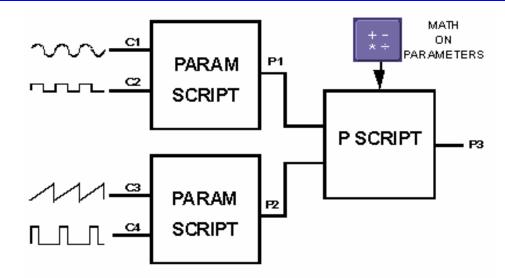
Excluded parameters are as follows:


- delta delay (DDLY)
- delta time at level (DTLEV)
- phase (PHASE)

Parameter Script Parameter Math

In addition to the arithmetic operations, the Parameter Math feature allows you to use VBScript or JavaScript to write your own script for one or two measurements and produce a result that suits your needs.

Code entry is done in the Script Editor window directly on the instrument. You can also import an existing script.


Param Script vs. P Script

Param Script is a VBScript or JavaScript that operates on one or two *waveforms* and outputs a parameter measurement, as shown in the figure below. P Script, on the other hand, is another VBScript or JavaScript that takes as input one or two *parameters* and performs a math operation on them to produce another parameter output.

The inputs to Param Script can also be math (F1-Fx) or memory (M1-Mx) traces. The inputs to P Script can be the results of any parameter measurement, not necessarily Param Script.

. The Source field will

. The **Source** field will

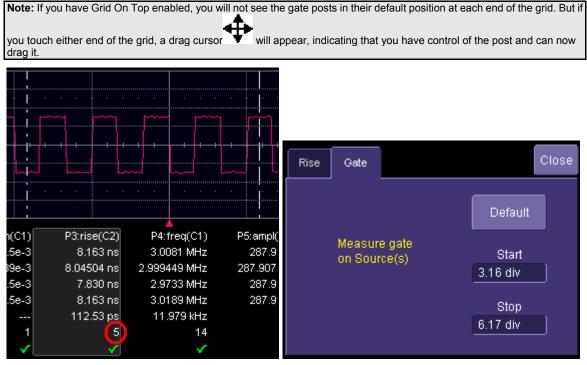
To Set Up Parameter Math

- 1. Touch **Measure** in the menu bar, then **Measure Setup...** in the drop-down menu.
- 2. Touch the My Measure button in the "Measure" dialog.
- 3. Touch the **Px** tab for the parameter to which you want to apply parameter math.
- 4. In the "Px" dialog, touch the **math on parameters** button expand to two fields.

5. Touch inside the **Source1** and **Source2** fields and select the parameters you want to apply math to (P1 to Px). If you are applying math to a single parameter (for example, invert), just touch inside the **Source1** field and select a parameter (P1 to Px).

6. Touch inside the **Math Operator** field and select a math operation from the **Select Measurement** menu. If you select an operation that requires two input parameters, the **Source** field will expand to two fields.

To Set Up Parameter Script Math


- 1. Touch Measure in the menu bar, then Measure Setup... in the drop-down menu.
- 2. Touch the My Measure button in the "Measure" dialog.
- 3. Touch the **Px** tab for the parameter to which you want to apply parameter math.
- 4. In the "Px" dialog, touch the **math on parameters** button expand to two fields.

5. Touch inside the **Source1** and **Source2** fields and select the parameters you want to apply math to (P1 to Px). If you are applying math to a single parameter (for example, invert), just touch inside the **Source1** field and select a parameter (P1 to Px).

- Touch inside the Math Operator field and select P Script from the Select Measurement menu.
- 7. In the "Script Math" dialog, touch inside the Script Language field and select either **VBScript** or **JScript** from the pop-up menu.
- 8. Touch the **Edit Code** button; the Script Editor window opens. You can enter code in this window or call up an existing script from a file storage location. If you create your script in this window, you can then export it and save it to file.

Measure Gate

Using Measure Gate, you can narrow the span of the waveform on which to perform parameter measurements, allowing you to focus on the area of greatest interest. You have the option of dragging the gate posts horizontally along the waveform, or specifying a position down to hundredths of a division. The default starting positions of the gate posts are 0 div and 10 div, which coincide with the left and right ends of the grid. The gate, therefore, initially encloses the entire waveform.

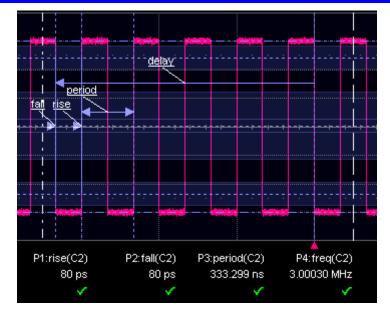
In this example, you can see that the Measure Gate includes only five rising edges. Therefore, parameter calculations for rise time are performed only on the five pulses bounded by the gate posts. The position of the gate posts is shown in the **Start** and **Stop** fields in the accompanying dialog.

To Set Up Measure Gate

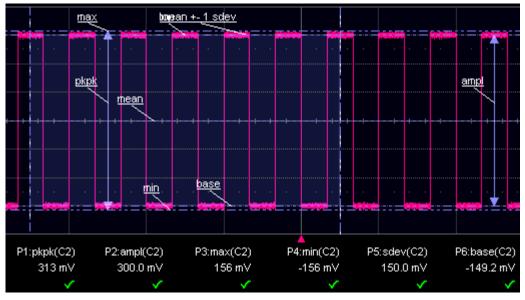
- 1. In the menu bar, touch **Measure Setup...**
- 2. Touch the **Px** tab for the parameter you want to gate. A mini-dialog to the right of the main setup dialog opens.

	have the parameter of interest set up, you can simply touch the parameter
directly below the gr	id.
P1:per@lv(C1)	
332.3 ns	
333.332 ns	
327.4 ns	
339.2 ns	
1.465 ns	
10.458e+3	

- 3. Touch inside the **Start** data entry field and enter a value, using the pop-up numeric keypad. Or, you can simply touch the leftmost grid line and drag the gate post to the right.
- 4. Touch inside the **Stop** data entry field and enter a value, using the pop-up numeric keypad. Or, you can simply touch the rightmost grid line and drag the gate post to the left.


Help Markers

Help Markers clarify parameter measurements by displaying movable cursors and a visual representation of what is being measured. For the "at level" parameters, Help Markers make it easier to see where your waveform intersects the chosen level. This feature also displays the hysteresis band that you have set about that level.


You also have the option, by means of an **Always On** checkbox, to leave the Help Markers displayed after you have closed the Help Markers setup dialog.

You have a choice of Simple or Detailed views of the markers:

- The Simple selection produces cursors and Measure Gate gate posts. The gate posts are independently placeable for each parameter.
- The **Detailed** selection produces cursors, Measure Gate gate posts, a label identifying the parameter being measured, and a level indicator and hysteresis band for "at level" parameters (not part of Standard Horizontal or Standard Vertical parameters).

Standard Horizontal Parameter Help Markers

Standard Vertical Parameter Help Markers

To Set Up Help Markers

- 1. In the menu bar, touch Measure Setup...
- 2. Select a Measure Mode: Std Vertical, Std Horizontal, or My Measure.

P1

- 3. Touch the **Show All** button **Construction** to display Help Markers for every parameter being measured on the displayed waveform (C2 in the examples above).
- 4. Touch a **P1** to **Px** tab for any parameter listed; it doesn't matter which. Touch inside the **Help Markers** field and select **Simple** The **Simple** selection produces cursors and Measure Gate gate posts. The gate posts are independently placeable for each parameter. or **Detailed** The **Detailed** selection produces cursors, Measure Gate gate posts, a label identifying the parameter being measured, and a level indicator and hysteresis band for "at level" parameters..

Note: The choice of Simple or Detailed is applied to all parameters at the same time. That is, if you choose Simple markers for one parameter, all parameters will be displayed in this mode.

5. Touch the **Always On** checkbox if you want to continuously display Help Markers for this parameter.

To Turn Off Help Markers

- 1. Touch the **Clear All** button **Clear All** button
- 2. To turn off Help Markers for individual parameters, touch the **Px** tab for the parameter in question. Then uncheck the **Always On** checkbox. When you close this dialog, the Help Markers for this parameter will no longer be displayed.

To Customize a Parameter

ΘĐ

From the Measure Dialog

- 1. Touch the **My Measure** button in the "Measure" dialog. The dialog presents you with a panel of eight preset parameters.
- 2. For each parameter, touch the **On** check box to enable the parameter listed.
- 3. If you want to change the parameter listed, or a measurement characteristic, touch the

parameter button (P1 for example) alongside the check box. A pop-up menu of parameters categorized by type appears. To display parameter icons only, touch the icon

button buttom at the bottom of the menu. To display the icons in list form, along with an

explanation of each parameter, touch the list button . Use the Up/Down buttons to scroll through the list of icons.

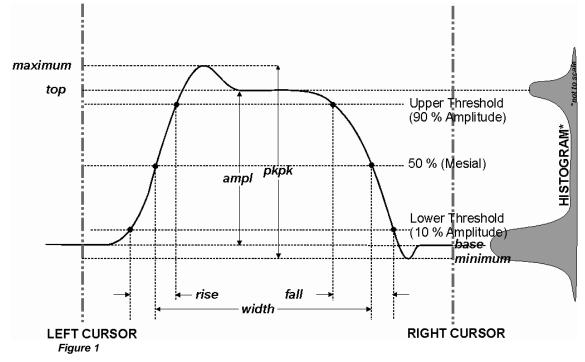
- 4. When you make a selection from the parameter icon menu, the setup dialogs for that parameter appear. You can then change the waveform source and other conditions of the parameter.
- 5. If you are setting up an "@level" parameter, make selections for Level type (percent or absolute), Slope (positive, negative, both), and Hysteresis level.
- 6. Touch the **Gate** tab, and set the position of the gate posts.

From a Vertical Setup Dialog

1. In the "Cx Vertical Adjust" dialog, touch the Measure button

- 2. Select a parameter from the pop-up menu. (The **Actions for trace** source defaults to the channel or trace whose dialog is open. If a parameter, it goes into the next "available" parameter, or the last one if all are used.)
- 3. Select another parameter or touch **Close**.

From a Math Setup Dialog


- 1. In the "Fx" dialog, touch the Measure button
- 2. Select a parameter from the pop-up menu. (The **Actions for trace** source defaults to the channel or trace whose dialog is open. If a parameter, it goes into the next "available" parameter, or the last one if all are used.)
- 3. Select another parameter or touch **Close**.

Parameter Calculations

Parameters and How They Work

Determining Top and Base Lines

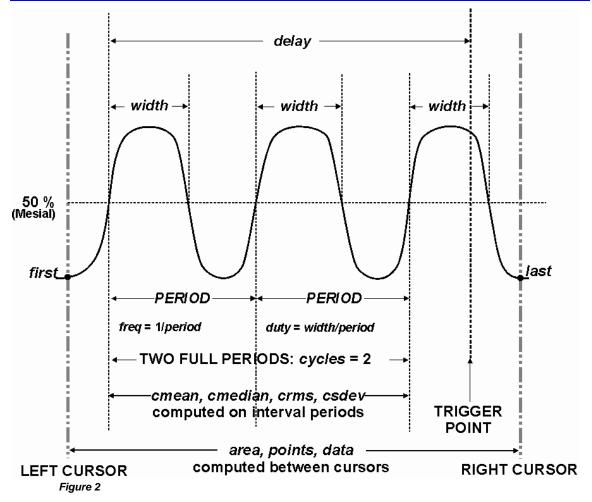
Proper determination of the top and base reference lines is fundamental for ensuring correct parameter calculations. The analysis begins by computing a histogram of the waveform data over the time interval spanned by the left and right time cursors. For example, the histogram of a waveform transitioning in two states will contain two peaks (see Figure 1). The analysis will attempt to identify the two clusters that contain the largest data density. Then the most probable state (centroids) associated with these two clusters will be computed to determine the top and base reference levels: the top line corresponds to the top and the base line to the bottom centroid.

Determining Rise and Fall Times

Once top and base are estimated, calculation of the rise and fall times is easily done (see Figure 1). The 90% and 10% threshold levels are automatically determined by the instrument, using the amplitude (ampl) parameter.

Threshold levels for rise or fall time can also be selected using absolute or relative settings (r@level, f@level). If absolute settings are chosen, the rise or fall time is measured as the time interval separating the two crossing points on a rising or falling edge. But when relative settings are chosen, the vertical interval spanned between the base and top lines is subdivided into a percentile scale

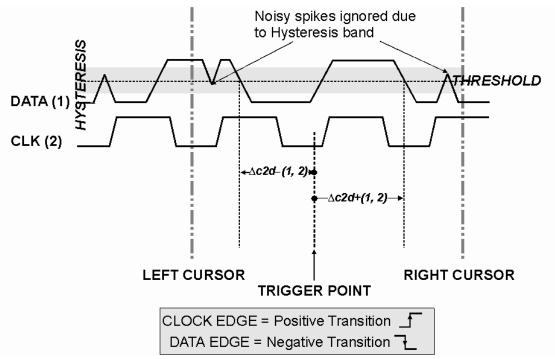
(base = 0 %, top = 100 %) to determine the vertical position of the crossing points.


The time interval separating the points on the rising or falling edges is then estimated to yield the rise or fall time. These results are averaged over the number of transition edges that occur within the observation window.

Rising Edge Duration	$\frac{1}{Mr} \sum_{i=1}^{Mr} (Tr_i^{90} - Tr_i^{10})$	
Falling Edge Duration	$\frac{1}{Mf} \sum_{i=1}^{Mf} (Tf_i^{10} - Tf_i^{90})$	
	leading edges found, Mf the	
number of trailing edges found, Tr_i^x the time when rising edge <i>i</i> crosses the x% level, Tf_i^x and the time when falling edge <i>i</i> crosses the x% level		
when falling edge <i>i</i> crosses the x	% level, $\overline{}$ and the time the x% level.	

Determining Time Parameters

Time parameter measurements such as width, period and delay are carried out with respect to the mesial reference level (see Figure 2), located halfway (50%) between the top and base reference lines.


Time-parameter estimation depends on the number of cycles included within the observation window. If the number of cycles is not an integer, parameter measurements such as rms or mean will be biased. However, only the last value is actually displayed, the mean being available when statistics are enabled. To avoid these bias effects, the instrument uses cyclic parameters, including crms and cmean, that restrict the calculation to an integer number of cycles.

Determining Differential Time Measurements

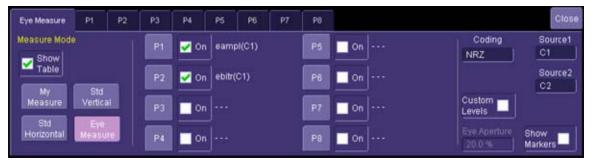
The instrument enables accurate differential time measurements between two traces: for example, propagation, setup and hold delays (see Figure 3).

Parameters such as Delta c2d± require the transition polarity of the clock and data signals to be specified.

Figure 3

Moreover, a hysteresis range may be specified to ignore any spurious transition that does not exceed the boundaries of the hysteresis interval. In Figure 3, Delta c2d- (1, 2) measures the time interval separating the rising edge of the clock (trigger) from the first negative transition of the data signal. Similarly, Delta c2d+ (1, 2) measures the time interval between the trigger and the next transition of the data signal.

Level and Slope


For several timebased measurements, you can choose positive, negative, or both slopes to begin parameter measurements. For two-input parameters, such as Dtime@level, you can specify the slope for each input, as well as the level and type (percent or absolute).

Eye Parameters

A set of parameters called Eye Parameters is available, which measures waveform characteristics based on the statistics on the 3-dimensional persistence map of the eye pattern. This map displays voltage vs. time vs. frequency of occurrence (on the Z-axis). All of the eye parameters begin with the designation EyeXXXX. For example, the rise timebased on a measurement of the eye pattern is referred to as Eye Rise Time.

There are two classes of digital signal whose eye patterns can be measured: Return to zero (RZ) and non-return to zero (NRZ). There are separate measurements for each of these signal types. The type of signal is selected in the parameter menu using the **Coding** control. The "Eye Measure"

menu also has controls to enter two sources. The **Source1** control is the primary input for all of the selected eye parameters, while **Source2** is used by eye parameters measured between two eye patterns. Sources for eye measurements can be any channel when the instrument is in Eye mode, and the eye pattern measured in Serial Data Analysis mode (Eye) when the WE-SDA option is installed.

The amplitude related parameters associated with NRZ signals are based on the one and zero levels, as measured within the eye aperture, which is defined as a percentage of the unit interval centered in the eye. The default percentage is 20%. The one and zero levels are measured as the mean of histograms around the high and low levels within the eye aperture. The level at 50% between the high and low levels at 10% and 90% are used by parameters such as rise time. NRZ measurements operate on the histogram mean of the persistence map.

Parameter	Description	Definition	Notes
Ext Ratio	Extinction ratio	$ER = \frac{\left(P_1 - P_d\right)}{\left(P_0 - P_d\right)}$	Dark calibration required to determine Pd. Result can be displayed in %, dB (10log(ER)).
Eye AC RMS	RMS value of the signal within 1 unit interval UI		
Eye Amplitude	Difference between the 0 and 1 levels	$Eampl = P_1 - P_0$	P1 and P0 are the mean of the amplitude.
Eye BER	Estimated BER based on eye amplitude and noise level	$BER = \frac{e^{-Q^2/2}}{Q\sqrt{2\pi}}$	Q is the Q factor. BER assumes optimum sampling position within the eye.
Eye Bit Rate	Bit rate based on the inverse of the measured unit interval	$BR = \frac{1}{UI}$	
Eye Bit Time	Duration of one unit interval		

Eye Crossing	Crossing level of the eye diagram		
Eye Cyc Area	The area under the mean persistence trace over the first UI on the display		
Eye delay	Time to the first crossing of an eye relative to the trigger or eye reference		
Eye delta delay	Delay of crossing times between two eyes		
Eye fall time	Fall time of the mean of the persistence map		90% to 10% default; user selectable levels
Eye frequency	Bit rate expressed as a frequency	$F = \frac{1}{2^* UI}$	
Eye height	Vertical eye opening	$EH = P_1 - P_0 - 3\sigma_1 - 3\sigma_0$	
Eye mean	Mean level of the eye	$\frac{1}{M}\sum_{0}^{UI}y_{i}$	y_i are the samples between the eye crossing times. M is the number of samples in the region within the eye crossing points.
Eye Open Fac	Size of vertical opening of the eye	Vertical eye closure penalty	
		$VECP = 10 \log \left(\frac{OMA}{A_0}\right)$	
Eye over N	Suppression ratio (RZ only)	$SR = \frac{(P_1 - P_0)}{(P_{0-1/2} - P_0)}$	$P_{0-1/2}$ is the zero level 1/2 of a UI from the peak (one level) of the RZ signal
Eye over P	Positive overshoot of eye diagram		

List of Parameters

The following table describes the instrument parameters. Availability of some parameters depends on the options installed. See the comments in the "Notes" column of the table.

156

Wave Expert

Parameter	Description	Definition	Notes
Amplitude	Measures the difference between upper and lower levels in two-level signals. Differs from pkpk in that noise, overshoot, undershoot, and ringing do not affect the measurement.	top base	On signals not having two major levels (such as triangle or saw-tooth waves), returns same value as pkpk. Standard parameter.
Ampl asym	Amplitude asymmetry between taa+ and taa-	1 - (taa+ - taa-) /(taa+ taa-)	Hysteresis argument used to discriminate levels from noise in data. Available with DDM2 option. Standard in
			DDA-5005A.
ACSN	Auto-correlation Signal-to-Noise provides a		Available with DDM2 option.
	signal-to-noise ratio for periodic waveforms.		Standard in DDA-5005A.
Area	Integral of data: Computes area of waveform between cursors relative to zero level. Values greater than zero contribute positively to the area; values less than zero negatively.	Sum from first to last of data multiplied by horizontal time between points	
Base	Lower of two most probable states (higher is top). Measures lower level in two-level signals. Differs from min in that noise, overshoot, undershoot, and ringing do not affect measurement.	Value of most probable lower state	On signals not having two major levels (triangle or saw-tooth waves, for example), returns same value as min. Standard parameter.
Cycles	Determines number of cycles of a periodic waveform lying between cursors. First cycle begins at first transition after the left cursor. Transition	Number of cycles of periodic waveform	Standard parameter.

	may be positive- or		
	negative-going.		
cyclic Mean	Cyclic mean: Computes the average of waveform data. Contrary to mean, computes average over an integral number of cycles, eliminating bias caused by fractional intervals.	Average of data values of an integral number of periods	
cyclic Median	Cyclic median: Computes average of base and top values over an integral number of cycles, contrary to median, eliminating bias caused by fractional intervals.	Data value for which 50% of values are above and 50% below	Choose this parameter by selecting Median from the parameter table, then touching the Cyclic checkbox. Standard parameter.
cyclic RMS	Cyclic root mean square: Computes square root of sum of squares of data values divided by number of points. Contrary to rms, calculation is performed over an integral number of cycles, eliminating bias caused by fractional intervals.	$\sqrt{\frac{1}{N} - \sum_{j=1}^{N} (v_j)^2}$	Where: v _i denotes measured sample values, and N = number of data points within the periods found. Choose this parameter by selecting RMS from the parameter table, then touching the Cyclic checkbox. Standard parameter.
cyclic Std dev	Cyclic standard deviation: Standard deviation of data values from mean value over integral number of periods. Contrary to sdev, calculation is performed over an integral number of cycles, eliminating bias caused by fractional intervals.	$\sqrt{\frac{1}{N}\sum_{l=1}^{N} (v_l - mean)^2}$	Where: v _i denotes measured sample values, and N = number of data points within the periods found. Choose this parameter by selecting Std dev from the parameter table, then touching the Cyclic checkbox. Standard parameter.
Delay	Time from trigger to transition: Measures time between trigger and first 50%	Time between trigger and first 50% crossing after left cursor	Standard parameter.

	crossing after left cursor. Can measure propagation delay between two signals by triggering on one and determining delay of other.		
Delta delay	delay: Computes time between 50% level of two sources.	Time between midpoint transition of two sources	Standard parameter.
Dperiod@level	Adjacent cycle deviation (cycle-to-cycle jitter) of each cycle in a waveform		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data. Available with JTA2 and
			XMAP options.
Dtime@level	t at level: Computes transition between selected levels or sources.	This measurement gives the time of the source 2 edge minus	edge-transition polarity
Duration	For single sweep waveforms, dur is 0; for sequence waveforms: time from first to last segment's trigger; for single segments of sequence waveforms: time from previous segment's to current segment's trigger; for waveforms produced by a history function: time from first to last accumulated waveform's trigger.	acquisition: for average, histogram or sequence waveforms	Standard parameter.
Duty@level	Percent of period for which data are above or below a specified level.		Reference levels and edge-transition polarity can be selected. Hysteresis argument

159

			used to discriminate levels from noise in data. Available with JTA2 and XMAP options.
Duty cycle	Duty cycle: Width as percentage of period.	width/period	Standard parameter.
Dwidth@level	Difference of adjacent width above or below a specified level.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Available with JTA2 and XMAP options.
Edge@level	Number of edges in waveform.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Available with JTA2 and XMAP options.
Excel	Performs measurements in Excel by transferring one or two waveforms and reading the resulting parameter value.		Available with XMAP option. Excel must be loaded on the instrument.

Wave Expert

Fall time	Fall time: Duration of falling edge from 90-10%. Thresh. Remote Lower Upper Default Lower Low 1% 45% 10% Upper High 55% 99% 90% Threshold arguments specify two vertical values on each edge used to compute fall time. Formulas for upper and lower values: lower = lower thresh. x amp/100 + base upper = upper thresh. x amp/100 + base		On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving, however, less predictable results. Standard parameter.
Fall 80-20%	Fall 80-20%: Duration of pulse waveform's falling transition from 80% to 20%, averaged for all falling transitions between the cursors.	Average duration of falling 80-20% transition	On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving, however, less predictable results.
Fall@level	Fall at level: Duration of pulse waveform's falling edges between user-specified transition levels. See also Rise@level.	Duration of falling edge between transition levels	Standard parameter. On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving, however, less predictable results. Standard parameter.
First	Indicates value of horizontal axis at left cursor.	Horizontal axis value at left cursor	

WE-OM-E Rev A

161

			and first will give the location of the cursor formerly on the right, now on left. Standard parameter.
Frequency	Frequency: Period of cyclic signal measured as time between every other pair of 50% crossings. Starting with first transition after left cursor, the period is measured for each transition pair. Values then averaged and reciprocal used to give frequency.	1/period	Standard parameter.
Freq@level	Frequency at a specific level and slope for every cycle in waveform.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Available with JTA2 and XMAP options.
FWHM	Measures the width of the largest area histogram peak at half of the population of		Available with DDM2, JTA2, and XMAP options.
	the highest peak.		Standard in DDA-5005A.
FWxx	Measures the width of the largest area histogram peak at xx% of the population of		Available with DDM2, JTA2, and XMAP options.
	the highest peak.		Standard in DDA-5005A.
Half period	Half period of a waveform.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.

		Available with JTA2 and XMAP options.
Hist ampl	Difference in value between the two most populated peaks in a histogram.	Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.
Hist base	Value of the left-most of the two most populated histogram peaks.	Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.
Hist maximum	Value of the highest (right-most) populated bin in a histogram.	Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.
Hist mean	Average or mean value of data in the histogram.	Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.
Hist median	Value of the "X" axis of a histogram that divides the population into two equal	Available with DDM2, JTA2, and XMAP options.
	halves.	Standard in DDA-5005A.
Hist minimum	Value of the lowest (left-most) populated bin in a histogram.	Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.

Hist rms	Root mean square of the values in a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Hist sdev	Standard deviation of values in a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Hist top	Value of the right-most of the two most populated histogram peaks.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Hold time	Time from the clock edge to the data edge. You can set levels, slope, and hysteresis independently for Hold Clock and Hold Data. See also Setup parameter.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Available with JTA2 and XMAP options.
Last	Time from trigger to last (rightmost) cursor.	Time from trigger to last cursor	right cursor. Cursors are interchangeable: for example, the right cursor may be moved to the left of the left cursor and first will give the location of the cursor formerly on the left, now on right.
			Standard parameter.
Level@X	Gives the vertical value at the specified <i>x</i> position. If the <i>x</i> position is between two points, it gives the interpolated value. When the		Standard parameter.

164

	Nearest point checkbox is checked, it gives the vertical value of the nearest data point.	
Local base	Value of the baseline for a local feature.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local bsep	Local baseline separation, between rising and falling slopes.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local max	Maximum value of a local feature.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local min	Minimum value of a local feature.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local number	Number of local features (peak/trough pairs).	Hysteresis argument used to discriminate levels from noise in

165

		data
		data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local pkpk	Vertical difference between the peak and trough of a local feature (Imax Imin).	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		 Standard in DDA-5005A.
Local tbe	Time between events (between local peak and next trough or local trough and next peak).	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local tbp	Time between a local feature peak and the next local peak.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local tbt	Time between a local feature trough and the next local trough.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		 Standard in DDA-5005A.
Local tmax	Time of the maximum value	Hysteresis argument

166

	of a local feature.	used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local tmin	Time of the minimum value of a local feature.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local tot	Time a local feature spends over a user specified percentage of its peak-to-trough amplitude.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.
Local tpt	Time between local feature peak and trough.	Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2 option.
		Standard in DDA-5005A.

Local ttp	Time between local feature		Hysteresis argument
	trough and the next local peak.		used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
Local tut	Time a local feature spends under a user specified percentage of its peak-to-trough amplitude.		Hysteresis argument used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
Mathcad	Produces a parameter using a user-specified Mathcad		Available with XMAP option.
	function.		Mathcad 2001i or later must be loaded on the instrument.
MATLAB	Produces a parameter using a user-specified MATLAB		Available with XMAP option.
	function.		MATLAB must be loaded on the instrument.
Maximum	Measures highest point in waveform. Unlike top, does not assume waveform has two levels.	Highest value in waveform between cursors	Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition. Computes horizontal axis location of rightmost non-zero bin of histogram not to be confused with maxp.

			Standard parameter.
Max populate	Peak with maximum population in a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Mean	Average of data for time domain waveform. Computed as centroid of distribution for a histogram.	Average of data	Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition.
			Standard parameter.
Median	The average of base and top values.	Average of Base and Top.	Standard parameter.
Minimum	Measures the lowest point in a waveform. Unlike base, does not assume waveform has two levels.	Lowest value in waveform between cursors	Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition.
Mode	Position of the highest		Standard parameter. Available with DDM2,
Mode	histogram peak.		JTA2, and XMAP options.
			Standard in DDA-5005A.
Nb phase	Provides a measurement of the phase at a specific frequency of a waveform (narrow band).		Available with DDM2 and XMAP options. Standard in DDA-5005A.
Nb Power	Provides a measurement of		Available with DDM2

169

	the power at a specific frequency of a waveform		and XMAP options. Standard in
	(narrow band).		DDA-5005A.
N-cycle jitter	Peak-to-peak jitter between edges spaced <i>n</i> UI apart.	Compares the expected time to the actual time of leading edges n bits apart.	Available in SDA analyzers.
NLTS	Provides a measurement of the nonlinear transition shift		
	for a prml signal.		Standard in DDA-5005AA.
Npts	Number of points in the waveform between the cursors.		Standard parameter.
Overshoot-	Overshoot negative: Amount of overshoot following a falling edge, as percentage of amplitude.	(base - min.)/ampl x 100	Waveform must contain at least one falling edge. On signals not having two major levels (triangle or saw-tooth waves, for example), may not give predictable results.
			Standard parameter.
Overshoot+	Overshoot positive: Amount of overshoot following a rising edge specified as percentage of amplitude.	(max top)/ampl x 100	Waveform must contain at least one rising edge. On signals not having two major levels (triangle or saw-tooth waves, for example), may not give predictable results.
			Standard parameter.
Overwrite	Ratio of residual-to-original power of a low frequency		Available with DDM2 option.
	waveform overwritten by a higher frequency.		Standard in DDA-5005A.
Param Script	Visual Basic or Java script that produces a measurement from one or		Available with XMAP option.

	two input waveforms.		Standard in DDA-5005A.
Peaks	Number of peaks in a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Peak to peak	Peak-to-peak: Difference between highest and lowest points in waveform. Unlike ampl, does not assume the waveform has two levels.	maximum - minimum	Gives a similar result when applied to time domain waveform or histogram of data of the same waveform. But with histograms, result may include contributions from more than one acquisition.
			Standard parameter.
Percentile	Horizontal data value that divides a histogram so the population to the left is xx%		Available with DDM2, JTA2, and XMAP options.
	of the total.		Standard in DDA-5005A.
Period	Period of a cyclic signal measured as time between every other pair of 50% crossings. Starting with first transition after left cursor, period is measured for each transition pair, with values averaged to give final result.	$\frac{1}{Mr} \sum_{i=1}^{Mr} (Tr_i^{50} - Tr_i^{50})$	Where: Mr is the number of leading edges found, Mf the number of trailing edges found, Tr_i^x the time when rising edge i crosses the x% level, and Tf_i^x the time when falling edge i crosses the x% level.
			Standard parameter.

Period@level	Period at a specified level and slope for every cycle in waveform.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data. Available with JTA2 and XMAP options.
Phase	Phase difference between signal analyzed and signal used as reference. You can set the output type to percent, degrees, or radians. After setting up the reference, touch the More tab for signal setups.	Phase difference between signal and reference	Standard parameter.
Pop@X	Population at bin for specified horizontal coordinate. You can place the cursor at any bin and use either Absolute, Reference, or Difference cursor shape.		Available with DDM2, JTA2, and XMAP options. Standard in DDA-5005A.
PW50	Average pulse width at the 50% point between the local baseline and the local peak or trough.		Hysteresis argument used to discriminate levels from noise in data. Available with DDM2 option. Standard in DDA-5005A.
PW50-	Average pulse width at the 50% point between the local baseline and the local trough.		Hysteresis argument used to discriminate levels from noise in data. Available with DDM2 option. Standard in DDA-5005A.
PW50+	Average pulse width at the		Hysteresis argument

172

			•
	50% point between the local baseline and the local peak.		used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
Range	Calculates range (max min) of a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Resolution	Ratio of taa for a high and low frequency waveform	taa (HF)/mean taa (LF)*100	Hysteresis argument used to discriminate levels from noise in data.
			Standard parameter.
Rise	Rise time: Duration of rising edge from 10-90%. Thresh. Remote Lower Upper Default Lower Low 1 % 45 % 10 % Upper High 55 % 99 % 90 % Threshold arguments specify two vertical values on each edge used to compute rise time. Formulas for upper and lower values: Iower = lower thresh. x amp/100 + base upper = upper thresh. x	Time at lower threshold minus Time at upper threshold averaged over each rising edge	
	upper = upper thresh. x amp/100 + base		

Rise 20% to 80%: Duration of pulse waveform's rising transition from 20% to 80%, averaged for all rising transitions between the cursors.	Average duration of rising 20-80% transition	(triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving, however, less predictable results.
<u> </u>		Standard parameter.
Rise at level: Duration of pulse waveform's rising edges between transition levels.	Duration of rising edges between transition levels	On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving, however, less predictable results.
		Standard parameter.
Root Mean Square of data between the cursors about same as sdev for a zero-mean waveform.	$\sqrt{\frac{1}{N} - \sum_{i=1}^{N} (v_i)^2}$	Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition.
		Where: v _i denotes measured sample values, and N = number of data points within the periods found up to maximum of 100 periods. Standard parameter.
_	of pulse waveform's rising transition from 20% to 80%, averaged for all rising transitions between the cursors. Rise at level: Duration of pulse waveform's rising edges between transition levels. Root Mean Square of data between the cursors about same as sdev for a	of pulse waveform's rising transition from 20% to 80%, averaged for all rising transitions between the cursors.rising 20-80% transitionRise at level: Duration of pulse waveform's rising edges between transition levels.Duration of rising edges between transition levelsRoot Mean Square of data between the cursors about same as sdev for a $1 - \sum_{n=1}^{N} (V_n)^2$

Setup	Time from the data edge to the clock edge.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Available with JTA2 and XMAP options.
Skew	Time of clock1 edge minus time of nearest clock2 edge.		Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data. Hysteresis on a measurement (if set to 500 mdiv) requires that the signal must transition one way 1/2 division (total swing) across the threshold for the measurement to be valid.
			Available with JTA2 and XMAP options.
Std dev	Standard deviation of the data between the cursors about the same as rms for a zero-mean waveform.	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(v_i - mean_i)^2}$	Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition.
			Where: v _i denotes measured sample values, and N = number of data points within the periods found up to maximum of 100 periods.

175

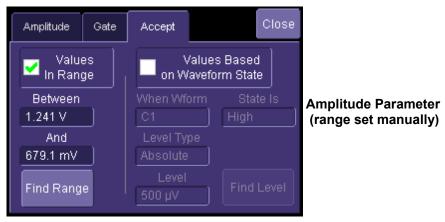
			Standard parameter
ТАА	Average peak-to-trough amplitude for all local features.		Standard parameter. Hysteresis argument used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
TAA-	Average local baseline-to-trough amplitude for all local features.		Hysteresis argument used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
TAA+	Average local baseline-to-peak amplitude for all local features.		Hysteresis argument used to discriminate levels from noise in data.
			Available with DDM2 option.
			Standard in DDA-5005A.
TIE@level	Difference between the measured times of crossing a given slope and level and the ideal expected time. For Slope you can choose positive, negative, or both. For output units you can choose time or unit interval (UI). A unit interval equals one clock period.	Cutoff Freq = (1/1.667e3) x Clock Freq	Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data. Available with JTA2 and XMAP options.
	The Virtual Clock setup gives you a choice of Standard (1.544 MHz) or Custom reference clocks.		

	You can also use a mathematically derived Golden PLL to filter low frequency jitter. The cutoff frequency is user selectable.		
Time@level	Time at level: Time from trigger (t=0) to crossing at a specified level.	Time from trigger to crossing level	Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
			Standard parameter.
Тор	Higher of two most probable states, the lower being base; it is characteristic of rectangular waveforms and represents the higher most probable state determined from the statistical distribution of data point values in the waveform.		Gives similar result when applied to time domain waveform or histogram of data of same waveform. But with histograms, result may include contributions from more than one acquisition.
			Standard parameter.
Total Pop	Total population of a histogram.		Available with DDM2, JTA2, and XMAP options.
			Standard in DDA-5005A.
Width	determined by examining 50% crossings in data input. If first transition after left	averaged for all similar	Similar to fwhm, though, unlike width, that parameter applies only to histograms.
	cursor is a rising edge, waveform is considered to consist of positive pulses and width the time between adjacent rising and falling edges. Conversely, if falling edge, pulses are considered negative and width the time between adjacent falling and		Standard parameter.

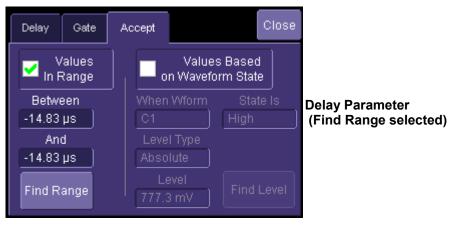
177

	rising edges. For both cases, widths of all waveform pulses are averaged for the final result.	
Width@level	Width measured at a specific level.	Reference levels and edge-transition polarity can be selected. Hysteresis argument used to discriminate levels from noise in data.
		Available with DDM2, JTA2, and XMAP options.
		Standard in DDA-5005A.
WidthN	Width measured at the 50% level and negative slope.	Standard parameter.
X at max	Determines the horizontal axis location of the maximum value between the cursors.	Restricted to time and frequency waveforms only.
X at min	Determines the horizontal axis location of the minimum value between the cursors.	Restricted to time and frequency waveforms only.
X at peak	The value of the nth highest histogram peak.	Applies only to histograms.
		Available with JTA2 and XMAP options.
		Standard in DDA-5005A.

Qualified Parameters


Some LeCroy instruments and software packages give you the ability to constrain parameter measurements to a vertically or horizontally limited range, or to occurrences gated by a second waveform. Furthermore, both constraints can operate together. This capability enables you to exclude unwanted characteristics from your measurements. It is much more restrictive than Measure Gate, which is used only to narrow the span of the waveform for analysis, along the horizontal axis.

Note: Since this feature operates on only a subset of the data, possible alerts or status indicators concerning the measurement (such as "Data range too low") are not displayed.


Range Limited Parameters

To Set Up Range Qualifiers

- 1. From the menu bar, select **Measure**, then **Measure Setup...** from the drop-down menu.
- 2. Touch a **Px** tab to open the setup dialog.
- 3. Touch inside the **Source** field and select a source from the pop-up menu.
- 4. Touch inside the **Measure** field and select a parameter from the pop-up menu.
- 5. Touch the Accept tab of the right-hand dialog, then touch the Values In Range checkbox. Depending on whether you select a vertical or horizontal parameter, the correct units will be automatically displayed (V, s, Hz, dB) in the Between and And fields. Or, if you select a simple ratio parameter (such as power factor) that yields a dimensionless number, no units will be displayed.
- 6. Touch the **Find Range** button to quickly display the most recent value of the parameter measurement. From there it is a simple matter to set the desired range.

Operator's Manual

Waveform Gated Parameters

To Set Up Waveform Qualifiers

- 1. From the menu bar, select **Measure**, then **Measure Setup...** from the drop-down menu.
- 2. Touch a **Px** tab to open the setup dialog.
- 3. Touch inside the **Source** field and select a source from the pop-up menu.
- 4. Touch inside the **Measure** field and select a parameter from the pop-up menu.
- 5. Touch the **Accept** tab of the right-hand dialog, then touch the **Values Based on Waveform State** checkbox.
- 6. Touch inside the **When Wform** field and select the gating source.
- 7. Touch inside the **State Is** field and select **High** or **Low** from the pop-up menu. Parameter measurements on the subject waveform will only be taken when the gating waveform is in the selected state.
- 8. Touch inside the Level Type field and select Absolute or Percent from the pop-up menu.
- Touch inside the Level field and enter the crossing level value at which you want measurements to begin. Alternatively, touch the Find Level button to automatically select the 50% level of your gating waveform.

WAVEFORM MATH

Introduction to Math Traces and Functions

With the instrument's math tools you can perform mathematical functions on a waveform displayed on any channel, or recalled from any of the four reference memories M1 to M4. You can also set up traces F1 to Fx to do math on parameter measurements P1 to Px.

For example: you could set up Trace F1 as the difference between Channels 1 and 2, Trace F2 as the average of F1, and Trace F3 as the integral of F2. You could then display the integral of the averaged difference between Channels 1 and 2. Any trace and function can be chained to another trace and function. For example, you could make Trace F1 an average of Channel 1, Trace F2 an FFT of F1, and Trace F3 a zoom of F2.

Note: Math traces F5-F8 are available only if you have loaded software option package XMATH or XMAP on WaveMaster or WavePro scopes, but are standard on Disk Drive Analyzers and Serial Data Analyzers.

Math Made Easy

With the instrument's math tools you can perform mathematical functions on a waveform displayed on any channel C1 to C4, or recalled from any of the four reference memories M1 to M4. To do computations in sequence, you can also use math functions F1 to Fx as a source input waveform. Or you can use Parameters P1 through Px

For example: you could set up F1 as the difference between Channels 1 and 2, F2 as the average of F1, and F3 as the integral of F2. You could then display the integral of the averaged difference between Channels 1 and 2. Any trace and function can be chained to another trace and function. For example, you could make F1 an average of Channel 1, F2 an FFT of F1, and F3 a zoom of F2.

Refer to the Specifications to find out which math tools are available in each optional package.

To Set Up a Math Function

This setup mode allows you to quickly apply frequently used math functions.

- 1. In the menu bar, touch Math, then Math setup...
- 2. If there are math functions already assigned to **F1** through **Fx**, touch the checkbox for the function you want to enable.
- 3. To assign a new math function to a trace, touch the Fx button for that trace, for example

. The math function menu appears.

4. Touch a menu selection; your new function is automatically assigned, with the same setups as were in place for the last function in that Fx position.

f(x)

5. If you want to change other setup items, like the source waveform, touch the appropriate

Fx tab, for example

6. Touch the **Single** function button

The setup dialog for that Fx position appears.

if you want to perform just one math function on

WE-OM-E Rev A

182

the trace, or touch the **Dual** function button f(g(x))

to perform math on math.

7. Touch the **Graph** button, then touch inside the **Graph with** field to select a graph mode. The Graph modes are as follows:

Histogram	Histogram of the values of a parameter
	Track of the values of a parameter
Trend	Trend of the values of a parameter

Resampling To Deskew

Deskew whenever you need to compensate for different lengths of cables, probes, or anything else that might cause timing mismatches between signals. Resample a signal on one channel and adjust it in time relative to a signal on another channel.

To Resample

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Touch a math function trace tab **F1** through **Fx** The number of math traces available depends on the software options loaded on your scope. See Specifications..
- 3. Touch the **single** function button.
- 4. Touch inside the **Source1** field and select a source: channel, math trace, memory location.
- 5. Touch inside the **Operator1** field and select **Deskew** from the **Functions** category.
- 6. In the dialog on the right, touch the **Deskew** tab.
- 7. Touch inside the **Delay by** data entry field and type in a time value, using the pop-up keypad.

Rescaling and Assigning Units

This feature allows you to apply a multiplication factor (*a*) and additive constant (*b*) to your waveform: aX + b. You can do it in the unit of your choice, depending on the type of application.`

Allowable unit abbreviations are as follows:

h	1	
(blank)	no units	
A	Ampere	
С	Coulomb	
CYCLE	cycles	
DB	Decibel	
DBC	Decibel referred to carrier	
DBM	Decibel Milliwatt	
DBV	Decibel Volts	
DBUZ	Decibel Microamp	
DEC	Decade	
DIV	Divisions	
Event	Events	
F	Farad	
G	Gram	
н	Henry	
HZ	Hertz	
J	Joule	
к	Degree Kelvin	
CEL	Degree Celsius	
FAR	Degree Fahrenheit	
L	Liter	
М	Meter	
FT	Foot	
IN	Inch	
YARD	yard	

MILE	mile
N	Newton
онм	Ohm
PAL	Pascal
РСТ	Percent
POISE	Poise
PPM	parts per million
RAD	Radian
DEG	Degree (of arc)
MNT	Minute (of arc)
SAMPLE	sample
SWEEP	sweeps
SEC	Second (of arc)
s	Second
SIE	Siemens
т	Tesla
UI	Unit interval
V	Volt
VA	Volt amps
W	Watt
WB	Weber
MIN	min
HOUR	Hour
DAY	Day
WEEK	Week

You can also enter combinations of the above units following the SI rules:

- for the quotient of two units, the character *I* should be used.
- for the product of two units, the character . should be used.
- exponents can be represented by a digit appended to the unit without a space.

For example,

- acceleration can be entered as M/S2 for meters per second squared.
- volts seconds can be entered as V.S.

In some cases, the units entered may be converted to simple units. For example entering V.A will display W (watts).

To Set Up Rescaling

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Touch a math function trace tab **F1** through **Fx** The number of math traces available depends on the software options loaded on your scope. See Specifications.
- 3. Touch the **single** function button.
- 4. Touch inside the **Source1** data entry field and select a source: channel, math trace, memory location.
- 5. Touch inside the **Operator1** data entry field and select **Rescale** from the **Functions** category.
- 6. In the dialog on the right, touch the **Rescale** tab.
- 7. Touch inside the **First multiply by** checkbox and enter a value for *a*, the multiplication factor.
- 8. Touch inside the **then add:** data entry field and enter a value for *b*, the additive constant.
- 9. Touch inside the **Override units** checkbox to disregard the source waveform's units, using the pop-up keyboard.

Averaging Waveforms

Summed vs. Continuous Averaging

For Summed averaging, you specify the number of acquisitions to be averaged. The averaged data is updated at regular intervals and presented on the screen.

On the other hand, Continuous averaging (the system default) helps to eliminate the effects of noise by continuously acquiring new data and adding the new waveforms into the averaging buffer. You determine the importance of new data vs. old data by assigning a weighting factor. Continuous averaging allows you to make adjustments to a system under test and to see the results immediately.

Note: Continuous Averaging is accessible from the channel "Vertical Adjust" dialog under "Pre-Processing," and from the math function menu.

Summed Averaging

Summed Averaging is the repeated addition, with equal weight, of successive source waveform records. If a stable trigger is available, the resulting average has a random noise component lower than that of a single-shot record. Whenever the maximum number of sweeps is reached, the averaging process stops.

An even larger number of records can be accumulated simply by changing the number in the dialog. However, the other parameters must be left unchanged or a new averaging calculation will be started. You can pause the averaging by changing the trigger mode from NORM/AUTO to STOP. The instrument resumes averaging when you change the trigger mode back to NORM/AUTO.

You can reset the accumulated average by pushing the CLEAR SWEEPS button or by changing an acquisition parameter such as input gain, offset, coupling, trigger condition, timebase, or bandwidth limit. The number of current averaged waveforms of the function, or its zoom, is shown in the acquisition status dialog. When summed averaging is performed, the display is updated at a reduced rate to increase the averaging speed (points and events per second).

Continuous Averaging

Continuous Averaging, the default setting, is the repeated addition, with unequal weight, of successive source waveforms. It is particularly useful for reducing noise on signals that drift very slowly in time or amplitude. The most recently acquired waveform has more weight than all the previously acquired ones: the continuous average is dominated by the statistical fluctuations of the most recently acquired waveform. The weight of 'old' waveforms in the continuous average gradually tends to zero (following an exponential rule) at a rate that decreases as the weight increases.

The formula for continuous averaging is

```
new average = (new data + weight * old average)/(weight + 1)
```

This is also the formula used to compute summed averaging. But by setting a "sweeps" value, you establish a fixed weight that is assigned to the old average once the number of "sweeps" is reached. For example, for a sweeps (weight) value of **4**:

```
WE-OM-E Rev A
```

1st sweep (no old average yet): new average = (new data +0 * old average)/(0 + 1) = new data only.

2nd sweep: new average = (new data + 1*old average)/(1 + 1) = 1/2 new data +1/2 old average.

 3^{rd} sweep: new average = (new data + 2 * old average)/(2 + 1) = 1/3 new data + 2/3 old average.

4th **sweep:** new average = (new data + 3 * old average)/(3 + 1) = 1/4 new data + 3/4 old average.

5th sweep: new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average.

6th **sweep:** new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average.

 7^{th} sweep: new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average.

In this way, for sweeps > 4 the importance of the old average begins to decrease exponentially.

Not	e: The number of	sweeps used to compute the average will be displayed in the bottom line of the trace descriptor label:
F1	<c1></c1>	
	100 m∀/div	
	500 ns/div	
	490 #	

To Set Up Continuous Averaging

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Select a function tab from **F1** through **Fx**. [The number of math traces available depends on the software options loaded on your scope. See Specifications.]
- 3. Touch inside the **Source1** field and select a source waveform from the pop-up menu.
- 4. Touch inside the **Operator1** field and select **Average** from the **Select Math Operator** menu.
- 5. Touch the **Average** tab in the dialog to the right of the "Fx" dialog, touch the **Continuous** button.
- 6. Touch inside the **Sweeps** data entry field and enter a value using the pop-up keypad. The valid range is 1 to 1,000,000 sweeps.

To Set Up Summed Averaging

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Select a function tab from **F1** through **Fx**. [The number of math traces available depends on the software options loaded on your scope. See Specifications.]
- 3. Touch inside the **Source1** field and select a source waveform from the pop-up menu.
- 4. Touch inside the **Operator1** field and select **Average** from the **Select Math Operator** menu.
- 5. Touch the Average tab in the dialog to the right of the "Fx" dialog, then touch the Summed

button.

6. Touch inside the **Sweeps** data entry field and type in a value using the pop-up keypad. The valid range is 1 to 1,000,000 sweeps.

Enhanced Resolution

ERES (Enhanced Resolution) filtering increases vertical resolution, allowing you to distinguish closely spaced voltage levels. The functioning of the instrument's ERES is similar to smoothing the signal with a simple, moving-average filter. However, it is more efficient concerning bandwidth and pass-band filtering. Use ERES on single-shot waveforms, or where the data record is slowly repetitive (when you cannot use averaging). Use it to reduce noise when your signal is noticeably noisy, but you do not need to perform noise measurements. Also use it when you perform high-precision voltage measurements: zooming with high vertical gain, for example.

How the Instrument Enhances Resolution

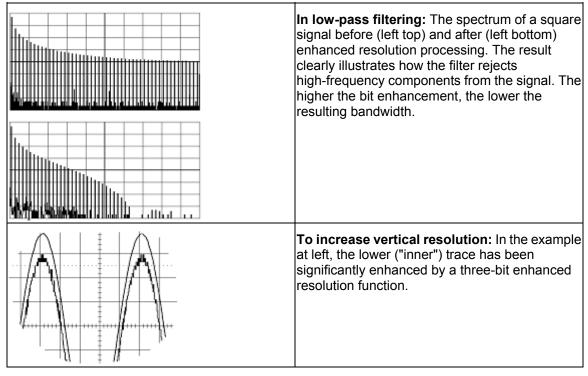
The instrument's enhanced resolution feature improves vertical resolution by a fixed amount for each filter. This real increase in resolution occurs whether or not the signal is noisy, or your signal is single-shot or repetitive. The signal-to-noise ratio (SNR) improvement you gain is dependent on the form of the noise in the original signal. The enhanced resolution filtering decreases the bandwidth of the signal, filtering out some of the noise.

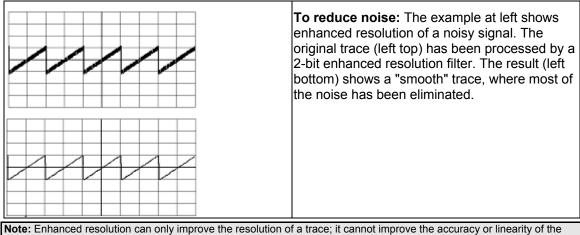
The instrument's constant phase FIR (Finite Impulse Response) filters provide fast computation, excellent step response in 0.5 bit steps, and minimum bandwidth reduction for resolution improvements of between 0.5 and 3 bits. Each step corresponds to a bandwidth reduction factor of two, allowing easy control of the bandwidth resolution trade-off. The parameters of the six filters are given in the following table.

Resolution increased by	-3 dB Bandwidth (× Nyquist)	Filter Length (Samples)
0.5	0.5	2
1.0	0.241	5
1.5	0.121	10
2.0	0.058	24
2.5	0.029	51
3.0	0.016	117

With low-pass filters, the actual SNR increase obtained in any particular situation depends on the power spectral density of the noise on the signal.

The improvement in SNR corresponds to the improvement in resolution if the noise in the signal is white -- evenly distributed across the frequency spectrum.

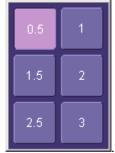

If the noise power is biased towards high frequencies, the SNR improvement will be better than the resolution improvement.


Operator's Manual

The opposite may be true if the noise is mostly at lower frequencies. SNR improvement due to the removal of coherent noise signals -- feed-through of clock signals, for example -- is determined by the fall of the dominant frequency components of the signal in the passband. This is easily ascertained using spectral analysis. The filters have a precisely constant zero-phase response. This has two benefits. First, the filters do not distort the relative position of different events in the waveform, even if the events' frequency content is different. Second, because the waveforms are stored, the delay normally associated with filtering (between the input and output waveforms) can be exactly compensated during the computation of the filtered waveform.

The filters have been given exact unity gain at low frequency. Enhanced resolution should therefore not cause overflow if the source data is not overflowed. If part of the source trace were to overflow, filtering would be allowed, but the results in the vicinity of the overflowed data -- the filter impulse response length -- would be incorrect. This is because in some circumstances an overflow may be a spike of only one or two samples, and the energy in this spike may not be enough to significantly affect the results. It would then be undesirable to disallow the whole trace.

The following examples illustrate how you might use the instrument's enhanced resolution function.



Note: Enhanced resolution can only improve the resolution of a trace; it cannot improve the accuracy or linearity of the original quantization. The pass-band will cause signal attenuation for signals near the cut-off frequency. The highest frequencies passed may be slightly attenuated. Perform the filtering on finite record lengths. Data will be lost at the start and end of the waveform: the trace will be slightly shorter after filtering. The number of samples lost is exactly equal to the length of the impulse response of the filter used: between 2 and 117 samples. Normally this loss (just 0.2 % of a 50,000 point trace) is not noticed. However, you might filter a record so short there would be no data output. In that case, however, the instrument would not allow you to use the ERES feature.

To Set Up Enhanced Resolution (ERES)

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Touch a function tab **F1** through **Fx** [The number of math traces available depends on the software options loaded on your scope. See Specifications.].
- 3. Touch inside the **Operator1** data entry field.
- 4. Select ERES from the All Functions or Filter group of Math functions.
- 5. Touch the Trace On checkbox.
- 6. Touch the "ERES" tab in the right-hand dialog, then touch inside the **bits** field and make an "Enhance by" selection from the pop-up menu:

Waveform Copy

The **Copy** math function makes a copy of your present waveform in its unprocessed state. While processing may continue on the original waveform, the copy enables faster throughput in some cases by preserving the original data. That is, no calculations need to be undone on the copy before additional math can be calculated.

This benefit of faster throughput, however, comes at the expense of memory usage.

Waveform Sparser

The Sparse math function allows you to thin out an incoming waveform by skipping points at regular intervals, and by starting acquisition at a particular "offset" (point). The **Sparsing factor** specifies the number of sample points to reduce the input waveform by. A sparsing factor of 4, for example, tells the scope to retain only one out of every 4 samples. A **Sparsing offset** of 3, on the other hand, tells the scope to begin on the third sample, then skip the number of samples specified by the sparsing factor (4). In this way, the sample rate is effectively reduced.

For the sparsing factor (interval), you can set a value from 1 to 1,000,000 points. For the sparsing offset you can set a value from 0 to 999,999.

Note: The maximum sparsing offset that can be entered for any sparsing factor equals Sparsing Factor 1.

To Set Up Waveform Sparser

- 1. In the menu bar, touch **Math**, then **Math setup...** in the drop-down menu.
- 2. Touch the tab for the function (F1 to Fx) you want to assign the Sparse operation to.
- 3. Touch inside the **Source1** field and select an input waveform.
- 4. Touch inside the **Operator1** field and select **Sparse** from the **Select Math Operator** menu.
- 5. Touch inside the **Sparsing factor** field and enter a value, using the pop-up keypad.
- 6. Touch inside the **Sparsing offset** field and enter a value, using the pop-up keypad.

Interpolation

Linear interpolation, which inserts a straight line between sample points, is best used to reconstruct straight-edged signals such as square waves. (Sinx)/x interpolation, on the other hand, is suitable for reconstructing curved or irregular waveshapes, especially when the sampling rate is 3 to 5 times the system bandwidth. The instrument also gives you a choice of Cubic interpolation.

For each method, you can select a factor from 2 to 50 points by which to interpolate (upsample).

To Set Up Interpolation

- 1. In the menu bar, touch **Math**, then **Math setup...** in the drop-down menu.
- 2. Touch the tab for the function (F1 to Fx you want to assign the Interpolate operation to.
- 3. Touch inside the **Source1** field and select an input waveform.
- 4. Touch inside the **Operator1** field, then touch the **Filter** button in the **Select Math Operator** menu.
- 5. Select **Interpolate** from the Filter submenu.

- 6. Touch the "Interpolate" tab in the mini setup dialog to the right of the main dialog.
- 7. Touch inside the Algorithm field and select an interpolation type.
- 8. Touch inside the **Upsample by** [Upsampling is the factor by which sampling is increased.] field and enter a value, using the pop-up numeric keypad, if you want to enter a specific value. Otherwise, use the **Up/Down** buttons to increment the displayed value in a 1-2-5 sequence.

Fast Wave Port

FastWavePort is a processing function for the LeCroy X-Stream family of digital oscilloscopes that enables you to insert your own custom processing algorithm, written in the C/C++ language, into the DSO's processing stream. FastWavePort maximizes data throughput from the acquisition system to your processing function. It also makes it simple to create these custom processing functions.

The technology that makes this system possible is the ability of two processes in a Windows system to share a region of memory. This enables the transfer of data at high-speed between the acquisition software and the custom processing function, which runs in a separate process from the DSO application. A major benefit of FastWavePort is that your application may be implemented and, more importantly, debugged independently of the main application.

It is important to note that the transfer of the results of your processing function back into the X-Stream processing stream is optional. If performance is the primary goal, and display or further processing of the results within the DSO software is not required, then this may be skipped.

Fast Wave Port Setup -- Initial

- 1. In the menu bar, touch **Math**, then **Math Setup...** in the drop-down menu.
- 2. Touch one of the Math function tabs,
- 3. Touch inside the "Source1" field, and select a signal source from the pop-up menu. The source can be a channel waveform, math or memory trace, or a parameter.

Math

for example.

4. Touch inside the "Operator"1 field and select **FastWavePort** from the **Custom** menu:

Operator's Manual

Se	Select Math Operator				
	Category Choices				
	All			Name	Description
	Functions		XV	Excel math	Perform Math in Excel. Transfers 1 or 2 waveforms into Excel and reads the resulting waveform.
	Basic Math	ΰV		Fast Wave Port	Produces a waveform using a user specified function
	Custom		∎vbs	Math script	Visual Basic script which produces a waveform from one or two input waveforms
	Custom			Mathcad math	Produces a waveform using a user specified Mathcad function
	Filter		*	MATLAB math	Produces a waveform using a user specified MATLAB function
	Frequency Analysis				
	Functions				
	Graphing				
	Jitter Functions	-			Cancel

5. In the right-hand mini-dialog, touch the FastWave Port tab:

Zoom	Fast Wave Port		Close
Ti in Ei	J Port Name astWavePort1 Timeout S ansfer buffer is fixe a max. record leng ach sample is store gned integer.	th of 40MSamples	_

6. Touch inside the "Timeout" field and enter a suitable value.

Setup -- Case 1

This scenario assumes that you have developed your application on a PC.

- 1. Compile your application on your PC
- 2. Copy the compiled file onto the scope, using a memory stick or network drive.
- 3. Open the Command Prompt window (Start --> Programs --> Accessories --> Command Prompt) and run your application.

Setup -- Case 2

This scenario assumes that you have Visual C++ loaded on the scope.

• Use the Visual C++ editor to develop and run your application.

Setup -- Case 3

This scenario assumes that you are using a compiler other than Visual C++ (such as GNU's MinGW). It should be noted that the optimizer in the GNU C Compiler (GCC) is less efficient than that in Visual C++ and will result in lower performance.

- 1. Save your application in a text file, and copy it onto memory stick or network drive.
- 2. Using Windows Explorer, copy the text file to the scope.
- 3. Download and install the compiler onto the scope.
- 4. Configure Environmental Variables as follows:
 - A. Open Start --> Settings --> Control Panel --> System.
 - B. Click the "Advanced" tab, then the **Environmental Variables** button.
 - C. In the "System variables" window, click Path, then the Edit button.
 - D. At the end of the "Variable Value" string, append ;C:\MinGW\bin for the case of the GNU C Compiler (GCC) for example.
 - E. Click OK.
- 5. Open the Command Prompt window (Start --> Programs --> Accessories --> Command Prompt) and compile your application.
- 6. Run your application.

Operational Notes

Once FastWavePort is selected, the right-hand dialog shows the current settings. The first of these is critical, and indicates the base name of the memory window and the two events, which are global within the Windows O/S. This should be left at its default value and only changed if multiple FastWavePort functions are used in parallel. Note that this name must match the base name used in the client application.

The full names of these global objects are:

Memory Mapped File	"FastWavePort1File"
Data Available Event	"FastWavePort1MutexDataAvailable"
Processing Complete Event	"FastWavePort1MutexProcessingComplete"

The "Timeout" field specifies the amount of time that the DSO will wait for the custom processing function to complete. This prevents the DSO from waiting indefinitely for a potentially unforthcoming custom processing function. Be careful to set this value to something reasonable, which means a time that is longer by a reasonable margin than the custom processing is ever expected to take.

Data Length Limitations

The size of the memory window is fixed at 80 Mbytes, which equates to 40 MSamples.

Performance

This is by far the fastest way to process data using a user-defined algorithm on an X-Stream DSO.

Choice of Programming Language

The system was designed for use with the C/C++ programming language. However, it is theoretically possible for the processing to be implemented in any language that supports Windows named events (Mutex) and can open a named memory-mapped file. No guarantee can be given, however, as to the behavior of the system using anything but C/C++.

Example Application

This simple C++ application may be used as a starting point for a custom processing function. It demonstrates the following:

- How to create handles to the global objects (the memory window and the two events).
- How to read data from the memory window when the DSO flags that it's available.
- How to scale the data into units of volts using data in the header that's stored at the beginning of the memory window.
- How to perform a simple processing function (in this case the absolute value).
- How to define the physical units of the output of the processing function (in this case 'Amps').
- How to flag to the DSO application that processing is complete.

//-----

// FastWavePortClient.cpp :

//

// Prototype C++ client application for "Fast Wave Port' Math Processor

 \parallel

196

```
// Compatibility:
```

// Microsoft Visual C++ 6.0, 7.1

// MinGW 'gcc' based compiler (free download from http://www.mingw.org/)

```
// Compile with: mingw32-c++ -o fastWavePortClient.exe fastwaveportclient.cpp
```

```
//-----
```

#include "windows.h"

#include <stdio.h>

```
//-----
```

 $\ensuremath{\textit{//}}\xspace$ FastWavePort header, describes various properties of the waveform passed to the user-processing

 $\prime\prime$ function. Also used to carry the properties of the processed waveform back to the DSO. $\prime\prime$

```
#define FLAGS_OUTPUT_VALID 0x01
```

typedef unsigned __int64 lecTimeStamp;

```
lecTimeStamp lecTimeStampOneSecond = 1000000000; // 1 ns units in a second
```

```
#pragma pack(push, 4)  // pack on 4-byte boundaries (Important!)
```

```
struct CDescHeader
```

{

int descVersion;	// header version number
int flags;	// misc. flags indicating the status of input, and how to treat the output
int headerSize;	// size of the header, data starts immediately after the hdr.
int windowSize;	// total size of the window (header + data)
int numSamples;	// total number of samples in the input waveform
int segmentIndex; sequence	// index of this segment, usually zero when input waveform is not a
int numSweeps;	
int _dummy1;	// not used
double verGain; of the waveform.	// scale factor that relates integer sample data values to the vertical units
double verOffset;	// vertical offset (in vertical units, e.g. Volts) of the waveform
double verResoluti	on; // vertical resolution of the measurement system (also in vertical units)

Operator's Manual

double horInterval; the waveform.	// scale factor that relates integer sample indices to the horizontal units of
double horOffset;	// horizontal offset (in horizontal units, e.g. seconds) of the waveform
double horResolution; units)	// horizontal resolution of the measurement system (also in horizontal
lecTimeStamp trigTim unsigned integer	e; // trigger time, units of 1ns since 00:00:00 on Jan 1st 2000, 64-bit
char verUnit[48];	// vertical units of the waveform ("V" for example)
char horUnit[48];	// horizontal units of the waveform ("s" for example)
};	
#pragma pack(pop)	// restore packing

//-----

// The buffer size is 80MB (40,000,000 samples, stored as short integers) plus 0x1000 bytes for the header.

```
const unsigned long HEADER_SIZE = 0x1000
```

const unsigned long MEM_MAP_FILE_SIZE = 80000000 + HEADER_SIZE; // = 40MSamples, or 80MBytes

int main(int argc, char* argv[])

{

// names based on 'FastWavePort1' name defined in Processor setup.

char szMapFileName[] = "FastWavePort1File";

char szMutexDataAvailableName[] = "FastWavePort1MutexDataAvailable";

char szMutexProcessingCompleteName[] = "FastWavePort1MutexProcessingComplete";

// Associate shared memory file handle value.

HANDLE m_hMMFile = CreateFileMapping ((HANDLE)0xffffffff, NULL, PAGE_READWRITE, 0, MEM_MAP_FILE_SIZE, szMapFileName);

```
if(m_hMMFile == 0)
{
    printf("Unable to create file mapping\n");
    return 0;
```

}

198

```
// Map a view of this file for writing.
short *m_lpMMFile = (short *)MapViewOfFile (m_hMMFile, FILE_MAP_ALL_ACCESS, 0, 0,
0);
if(m_lpMMFile == 0)
{
    printf("Unable to map view of file\n");
    return 0;
```

}

// create/open events used for synchronization

 $\prime\prime$ if the client app. was run before the scope then these events will be created, if the scope was run first then these events

```
// will just be opened
```

```
HANDLE m_hDataAvailable = CreateEvent(NULL, FALSE, FALSE /* initial state */, szMutexDataAvailableName);
```

```
HANDLE m_hProcessingComplete = CreateEvent(NULL, FALSE, FALSE /* initial state */, szMutexProcessingCompleteName);
```

```
if(m_hDataAvailable == 0 || m_hProcessingComplete == 0)
{
    printf("Unable to open events\n");
    return 0;
}
// main loop
while(1)
{
    int i = 0;
    printf("Waiting for new data...\n");
    // wait an infinite amount of time for data to be available
    DWORD waitSuccess = WaitForSingleObject(m_hDataAvailable, INFINITE);
    // print the first few bytes of the input waveform
    CDescHeader *descHeader = (CDescHeader *) &m_lpMMFile[0];
    short *m_lpWaveform = &m_lpMMFile[descHeader->headerSize / sizeof(short)];
```

```
for(i = 0; i < 4; ++i)
            printf("%f", (m lpWaveform[i] * descHeader->verGain) + descHeader->verOffset);
       // compute the mean of all data values, while computing the abs value of the waveform
in-place
         double sum = 0.0;
         for(i = 0; i < descHeader->numSamples; ++i)
         {
           sum += (m lpWaveform[i] * descHeader->verGain) + descHeader->verOffset;
           m lpWaveform[i] = abs(m lpWaveform[i]);
         }
         sum /= descHeader->numSamples;
       // modify the output units, set to Amps
         strcpy(descHeader->verUnit, "A");
       // print the mean, numer of samples, trigger time in seconds, and the segment index
         printf(" (%f) %d %d %d\n", sum, descHeader->numSamples, (int)
(descHeader->trigTime / lecTimeStampOneSecond), descHeader->segmentIndex);
       // use to flag that the output is not valid, increasing performance when
       // it is not necessary to read data back into the DSO
         //descHeader->flags &= ~FLAGS_OUTPUT_VALID;
       // flag that processing is complete
         SetEvent(m hProcessingComplete);
    }
  return 0;
}
```

Header Description

int descVersion; // header version number

int flags; // misc. flags indicating the status of input, and how to treat the output

int headerSize; // size of the header, data starts immediately after the hdr.

```
int windowSize; // total size of the window (header + data)
```

int numSamples; // total number of samples in the input waveform

int segmentIndex; // index of this segment, usually zero when input waveform is not a sequence

200

int numSweeps;

int _dummy1; // not used

double verGain; // scale factor that relates integer sample data values to the vertical units of the waveform.

double verOffset; // vertical offset (in vertical units, e.g. Volts) of the waveform

double verResolution; // vertical resolution of the measurement system (also in vertical units)

double horInterval; // scale factor that relates integer sample indices to the horizontal units of the waveform.

double horOffset; // horizontal offset (in horizontal units, e.g. seconds) of the waveform

double horResolution; // horizontal resolution of the measurement system (also in horizontal units)

lecTimeStamp trigTime; // trigger time, units of 1ns since 00:00:00 on Jan 1st 2000, 64-bit unsigned integer

char verUnit[48]; // vertical units of the waveform ("V" for example)

char horUnit[48]; // horizontal units of the waveform ("s" for example)

Data Length Limitations

The size of the memory window is fixed at 80 Mbytes, which equates to 40M samples.

Performance

Under optimal conditions, on a DSO with a 1.7 GHz Celeron processor, rates of up to 75 MS/s have been observed. Due to the differences between the acquisition and processing hardware in each of the X-Stream DSOs, this value may vary significantly and therefore cannot be guaranteed. However, this is by far the fastest way to process data using a user-defined algorithm on an X-Stream DSO.

Choice of Programming Language

The system was designed for use with the C/C++ programming language, and all furnished examples use this language. It is theoretically possible, however, for the processing to be implemented in any language that supports Windows named events (Mutex) and can open a named memory-mapped file. Nevertheless, no guarantee can be given as to the behavior of the system using anything but C/C++.

FFT

Why Use FFT?

For a large class of signals, you can gain greater insight by looking at spectral representation rather than time description. Signals encountered in the frequency response of amplifiers, oscillator phase noise and those in mechanical vibration analysis, for example, are easier to observe in the frequency domain.

If sampling is done at a rate fast enough to faithfully approximate the original waveform (usually five times the highest frequency component in the signal), the resulting discrete data series will uniquely describe the analog signal. This is of particular value when dealing with transient signals because, unlike FFT, conventional swept spectrum analyzers cannot handle them.

Spectral analysis theory assumes that the signal for transformation is of infinite duration. Since no physical signal can meet this condition, a useful assumption for reconciling theory and practice is to view the signal as consisting of an infinite series of replicas of itself. These replicas are multiplied by a rectangular window (the display grid) that is zero outside of the observation grid.

An FFT operation on an N-point time domain signal can be compared to passing the signal through a comb filter consisting of a bank of N/2 filters. All the filters have the same shape and width and are centered at N/2 discrete frequencies. Each filter collects the signal energy that falls into the immediate neighborhood of its center frequency. Thus it can be said that there are N/2 frequency bins. The distance in Hz between the center frequencies of two neighboring bins is always the same: Delta f.

Power (Density) Spectrum

Because of the linear scale used to show magnitudes, lower amplitude components are often hidden by larger components. In addition to the functions offering magnitude and phase representations, the FFT option offers power density and power spectrum density functions. These latter functions are even better suited for characterizing spectra. The power spectrum (V^2) is the square of the magnitude spectrum (0 dBm corresponds to voltage equivalent to 1 mW into 50 ohms.) This is the representation of choice for signals containing isolated peaks — periodic signals, for instance.

The power density spectrum (V^2 /Hz) is the power spectrum divided by the equivalent noise bandwidth of the filter associated with the FFT calculation. This is best employed for characterizing broadband signals such as noise.

Memory for FFT

The amount of acquisition memory available will determine the maximum range (Nyquist frequency) over which signal components can be observed. Consider the problem of determining the length of the observation window and the size of the acquisition buffer if a Nyquist rate of 500 MHz and a resolution of 10 kHz are required. To obtain a resolution of 10 kHz, the acquisition time must be at least:

T = 1/Delta f = 1/10 kHz = 100 ms.

For a digital oscilloscope with a memory of 100 kB, the highest frequency that can be analyzed is:

Delta f x N/2 = 10 kHz x 100kB/2 = 500 MHz.

FFT Pitfalls to Avoid

Take care to ensure that signals are correctly acquired: improper waveform positioning within the observation window produces a distorted spectrum. The most common distortions can be traced to insufficient sampling, edge discontinuities, windowing or the "picket fence" effect.

Because the FFT acts like a bank of band-pass filters centered at multiples of the frequency resolution, components that are not exact multiples of that frequency will fall within two consecutive filters. This results in an attenuation of the true amplitude of these components.

Picket Fence and Scallop

The highest point in the spectrum can be 3.92 dB lower when the source frequency is halfway between two discrete frequencies. This variation in spectrum magnitude is the picket fence effect. The corresponding attenuation loss is referred to as scallop loss. LeCroy scopes automatically correct for the scallop effect, ensuring that the magnitude of the spectra lines correspond to their true values in the time domain.

If a signal contains a frequency component above Nyquist, the spectrum will be aliased, meaning that the frequencies will be folded back and spurious. Spotting aliased frequencies is often difficult, as the aliases may ride on top of real harmonics. A simple way of checking is to modify the sample rate and observe whether the frequency distribution changes.

Leakage

FFT assumes that the signal contained within the time grid is replicated endlessly outside the observation window. Therefore if the signal contains discontinuities at its edges, pseudo-frequencies will appear in the spectral domain, distorting the real spectrum. When the start and end phase of the signal differ, the signal frequency falls within two frequency cells, broadening the spectrum.

The broadening of the base, stretching out in many neighboring bins, is termed leakage. Cures for this are to ensure that an integral number of periods is contained within the display grid or that no discontinuities appear at the edges. Another is to use a window function to smooth the edges of the signal.

Choosing a Window

The choice of a spectral window is dictated by the signal's characteristics. Weighting functions control the filter response shape, and affect noise bandwidth as well as side lobe levels. Ideally, the main lobe should be as narrow and flat as possible to effectively discriminate all spectral components, while all side lobes should be infinitely attenuated. The window type defines the bandwidth and shape of the equivalent filter to be used in the FFT processing.

In the same way as one would choose a particular camera lens for taking a picture, some experimenting is generally necessary to determine which window is most suitable. However, the following general guidelines should help.

Rectangular windows provide the highest frequency resolution and are thus useful for estimating

Operator's Manual

the type of harmonics present in the signal. Because the rectangular window decays as a (sinx)/x function in the spectral domain, slight attenuation will be induced. Alternative functions with less attenuation (Flat Top and Blackman-Harris) provide maximum amplitude at the expense of frequency resolution. Whereas, Hamming and Von Hann are good for general purpose use with continuous waveforms.

Window Type	Applications and Limitations
Rectangular	These are normally used when the signal is transient (completely contained in the time-domain window) or known to have a fundamental frequency component that is an integer multiple of the fundamental frequency of the window. Signals other than these types will show varying amounts of spectral leakage and scallop loss, which can be corrected by selecting another type of window.
Hanning (Von Hann)	These reduce leakage and improve amplitude accuracy. However, frequency resolution is also reduced.
Hamming	These reduce leakage and improve amplitude accuracy. However, frequency resolution is also reduced.
Flat Top	This window provides excellent amplitude accuracy with moderate reduction of leakage, but with reduced frequency resolution.
Blackman–Harris	It reduces the leakage to a minimum, but with reduced frequency resolution.

FFT Window Filter Parameters				
Window Type	Highest Side Lobe (dB)	Scallop Loss (dB)	ENBW (bins)	Coherent Gain (dB)
Rectangular	-13	3.92	1.0	0.0
von Hann	-32	1.42	1.5	-6.02
Hamming	-43	1.78	1.37	-5.35
Flat Top	-44	0.01	2.96	-11.05
Blackman-Harris	-67	1.13	1.71	-7.53

Improving Dynamic Range

Enhanced resolution uses a low-pass filtering technique that can potentially provide for three additional bits (18 dB) if the signal noise is uniformly distributed (white). Low-pass filtering should be considered when high frequency components are irrelevant. A distinct advantage of this technique is that it works for both repetitive and transient signals. The SNR increase is conditioned by the cut-off frequency of the ERES low-pass filter and the noise shape (frequency distribution).

LeCroy digital oscilloscopes employ FIR digital filters so that a constant phase shift is maintained. The phase information is therefore not distorted by the filtering action.

Record Length

Because of its versatility, FFT analysis has become a popular analysis tool. However, some care must be taken with it. In most instances, incorrect positioning of the signal within the display grid will significantly alter the spectrum. Effects such as leakage and aliasing that distort the spectrum must be understood if meaningful conclusions are to be arrived at when using FFT.

An effective way to reduce these effects is to maximize the acquisition record length. Record length directly conditions the effective sampling rate of the scope and therefore determines the frequency resolution and span at which spectral analysis can be carried out.

FFT Algorithms

A summary of the algorithms used in the oscilloscope's FFT computation is given here in a few steps:

- 1. The data are multiplied by the selected window function.
- 2. FFT is computed, using a fast implementation of the DFT (Discrete Fourier Transform):

$$X_n = \frac{1}{N} \sum_{k=0}^{k=N-1} x_k \times W^{nk}$$

where: x_k is a complex array whose real part is the modified source time domain waveform, and whose imaginary part is 0; X_n is the resulting complex frequency-domain waveform;

 $W = e^{-2\pi i/N}$; and *N* is the number of points in x_k and X_n .

The generalized FFT algorithm, as implemented here, works on N, which need *not* be a power of 2.

- 3. The resulting complex vector X_n is divided by the coherent gain of the window function, in order to compensate for the loss of the signal energy due to windowing. This compensation provides accurate amplitude values for isolated spectrum peaks.
- 4. The real part of X_n is symmetric around the Nyquist frequency, that is

$$R_n = R_{N-n}$$

while the imaginary part is asymmetric, that is

$$I_n = -I_{N-n}$$

The energy of the signal at a frequency *n* is distributed equally between the first and the second halves of the spectrum; the energy at frequency 0 is completely contained in the

0 term.

The first half of the spectrum (Re, Im), from 0 to the Nyquist frequency is kept for further processing and doubled in amplitude:

$$R'_n = 2 \times R_n_0 n < N/2$$

 $I'_n = 2 \times I_n 0 n < N/2$

5. The resultant waveform is computed for the spectrum type selected.

If "Magnitude" is selected, the magnitude of the complex vector is computed as:

$$M_n = \sqrt{R_n^2 + l_n^2}$$

Steps 1–5 lead to the following result:

An AC sine wave of amplitude 1.0 V with an integral number of periods N_p in the time window, transformed with the rectangular window, results in a fundamental peak of 1.0 V magnitude in the spectrum at frequency N_p x Delta f. However, a DC component of 1.0 V, transformed with the rectangular window, results in a peak of 2.0 V magnitude at 0 Hz.

The waveforms for the other available spectrum types are computed as follows:

Phase: angle = arctan
$$(I_n/R_n)_M_n > M_{min}$$

angle = 0 $M_n M_{min}$

Where M_{min} is the minimum magnitude, fixed at about 0.001 of the full scale at any gain setting, below which the angle is not well defined.

The dBm Power Spectrum:

$$dBm \ PS = 10 \times \log_{10} \left(\frac{M_n^2}{M_{ref}^2} \right) = 20 \times \log_{10} \left(\frac{M_n}{M_{ref}} \right)$$

where M_{ref} = 0.316 V (that is, 0 dBm is defined as a sine wave of 0.316 V peak or 0.224 V rms, giving 1.0 mW into 50 ohms).

The dBm Power Spectrum is the same as dBm Magnitude, as suggested in the above formula.

dBm Power Density:

$$dBmPD = dBmPS - 10 \times \log_{10} (ENBW \times \Delta f)$$

where *ENBW* is the equivalent noise bandwidth of the filter corresponding to the selected window, and *Delta f* is the current frequency resolution (bin width).

6. The FFT Power Average takes the complex frequency-domain data R'_n and I'_n for each spectrum generated in Step 5, and computes the square of the magnitude:

$$M_n^2 = R_n'^2 + I_n'^2,$$

then sums $M_n 2$ and counts the accumulated spectra. The total is normalized by the number of spectra and converted to the selected result type using the same formulas as

WE-OM-E Rev A

206

are used for the Fourier Transform.

Glossary

This section defines the terms frequently used in FFT spectrum analysis and relates them to the oscilloscope.

Aliasing If the input signal to a sampling acquisition system contains components whose frequency is greater than the Nyquist frequency (half the sampling frequency), there will be less than two samples per signal period. The result is that the contribution of these components to the sampled waveform is indistinguishable from that of components below the Nyquist frequency. This is **aliasing**.

The timebase and transform size should be selected so that the resulting Nyquist frequency is higher than the highest significant component in the time-domain record.

Coherent Gain The normalized coherent gain of a filter corresponding to each window function is 1.0 (0 dB) for a rectangular window and less than 1.0 for other windows. It defines the loss of signal energy due to the multiplication by the window function. This loss is compensated for in the oscilloscope. The following table lists the values for the implemented windows.

Window Frequency Domain Parameters						
Window Type	Highest Side Lobe (dB)	Scallop Loss (dB)	ENBW (bins)	Coherent Gain (dB)		
Rectangular	-13	3.92	1.0	0.0		
Hanning (Von Hann)	-32	1.42	1.5	-6.02		
Hamming	-43	1.78	1.37	-5.35		
Flattop	-44	0.01	2.96	-11.05		
Blackman–Ha rris	-67	1.13	1.71	-7.53		

ENBW Equivalent Noise BandWidth (ENBW) is the bandwidth of a rectangular filter (same gain at the center frequency), equivalent to a filter associated with each frequency bin, which would collect the same power from a white noise signal. In the table on the previous page, the ENBW is listed for each window function implemented, given in bins.

Filters Computing an N-point FFT is equivalent to passing the time-domain input signal through N/2 filters and plotting their outputs against the frequency. The spacing of filters is Delta f = 1/T, while the bandwidth depends on the window function used (see Frequency Bins).

Frequency Bins The FFT algorithm takes a discrete source waveform, defined over N points, and computes N complex Fourier coefficients, which are interpreted as harmonic components of the input signal.

For a real source waveform (imaginary part equals 0), there are only N/2 independent harmonic components.

Operator's Manual

An FFT corresponds to analyzing the input signal with a bank of N/2 filters, all having the same shape and width, and centered at N/2 discrete frequencies. Each filter collects the signal energy that falls into the immediate neighborhood of its center frequency. Thus it can be said that there are N/2 "frequency bins."

The distance in hertz between the center frequencies of two neighboring bins is always:

Delta f = 1/T

where T is the duration of the time-domain record in seconds.

The width of the main lobe of the filter centered at each bin depends on the window function used. The rectangular window has a nominal width at 1.0 bin. Other windows have wider main lobes (see table).

Frequency Range The range of frequencies computed and displayed is 0 Hz (displayed at the left-hand edge of the screen) to the Nyquist frequency (at the rightmost edge of the trace).

Frequency Resolution In a simple sense, the frequency resolution is equal to the bin width Delta f. That is, if the input signal changes its frequency by Delta f, the corresponding spectrum peak will be displaced by Df. For smaller changes of frequency, only the shape of the peak will change.

However, the effective frequency resolution (that is, the ability to resolve two signals whose frequencies are almost the same) is further limited by the use of window functions. The ENBW value of all windows other than the rectangular is greater than Delta f and the bin width. The table of Window Frequency-Domain Parameters lists the ENBW values for the implemented windows.

Leakage In the power spectrum of a sine wave with an integral number of periods in the (rectangular) time window (that is, the source frequency equals one of the bin frequencies), the spectrum contains a sharp component whose value accurately reflects the source waveform's amplitude. For intermediate input frequencies this spectral component has a lower and broader peak.

The broadening of the base of the peak, stretching out into many neighboring bins, is termed *leakage*. It is due to the relatively high side lobes of the filter associated with each frequency bin.

The filter side lobes and the resulting leakage are reduced when one of the available window functions is applied. The best reduction is provided by the Blackman–Harris and Flattop windows. However, this reduction is offset by a broadening of the main lobe of the filter.

Number of Points The FFT is computed over the number of points (Transform Size) whose upper bounds are the source number of points, and by the maximum number of points selected in the menu. The FFT generates spectra of N/2 output points.

Nyquist Frequency The Nyquist frequency is equal to one half of the effective sampling frequency (after the decimation): Delta f x N/2.

Picket Fence Effect If a sine wave has a whole number of periods in the time domain record, the power spectrum obtained with a rectangular window will have a sharp peak, corresponding exactly to the frequency and amplitude of the sine wave. Otherwise the spectrum peak with a rectangular window will be lower and broader.

The highest point in the power spectrum can be 3.92 dB lower (1.57 times) when the source

WE-OM-E Rev A

208

frequency is halfway between two discrete bin frequencies. This variation of the spectrum magnitude is called the *picket fence effect* (the loss is called the scallop loss).

All window functions compensate for this loss to some extent, but the best compensation is obtained with the Flattop window.

Power Spectrum The power spectrum (V^2) is the square of the magnitude spectrum.

The power spectrum is displayed on the dBm scale, with 0 dBm corresponding to:

$$V_{ref}^{2} = (0.316 V_{peak})^{2}$$
,

where V_{ref} is the peak value of the sinusoidal voltage, which is equivalent to 1 mW into 50 ohms.

Power Density Spectrum The power density spectrum (V²/Hz) is the power spectrum divided by the equivalent noise bandwidth of the filter, in hertz. The power density spectrum is displayed on the dBm scale, with 0 dBm corresponding to (V_{ref}^2 /Hz).

Sampling Frequency The time-domain records are acquired at sampling frequencies dependent on the selected timebase. Before the FFT computation, the time-domain record may be decimated. If the selected maximum number of points is lower than the source number of points, the effective sampling frequency is reduced. The effective sampling frequency equals twice the Nyquist frequency.

Scallop Loss This is loss associated with the picket fence effect.

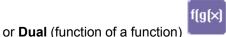
Window Functions All available window functions belong to the sum of cosines family with one to three non-zero cosine terms:

$$W_{k} = \sum_{m=0}^{m-M-1} a_{m} \cos\left(\frac{2pk}{N}m\right) \qquad 0 \le k \le N$$

where: M = 3 is the maximum number of terms, a_m are the coefficients of the terms, N is the number of points of the decimated source waveform, and k is the time index.

The table of Coefficients of Window Functions lists the coefficients a_m . The window functions seen in the time domain are symmetric around the point k = N/2.

Coefficients of Window Functions							
Window Type	a₀	a 1	a ₂				
Rectangular	1.0	0.0	0.0				
Hanning (Von Hann)	0.5	-0.5	0.0				
Hamming	0.54	-0.46	0.0				
Flattop	0.281	-0.521	0.198				
Blackman–Ha rris	0.423	-0.497	0.079				


FFT Setup

To Set Up an FFT

- 1. In the menu bar touch Math, then Math Setup... in the drop-down menu.
- 2. Touch a Math function trace button: F1 through Fx; a pop-up menu appears. Select FFT

3. Touch the **Single**

- button if the FFT is to be
- of the result of another math operation. 4. Touch inside the Source1 field and select a channel, memory, or math trace on which to perform the FFT.
- 5. Touch inside the **Operator1** field: Select **FFT** from the pop-up menu if you selected **Single** function. Select another math function if you selected **Dual** function. Then touch inside the Operator2 field and select FFT from the pop-up menu.
- 6. In the right-hand dialog, touch the FFT tab.

- 7. Choose whether to **Truncate[‡]** trunc or **Zero-fill[§]** the trace display.
- 8. Touch the Suppress DC checkbox if you want to make the DC bin go to zero. Otherwise,

[‡] When the FFT transform size does not match the record length, you can truncate the record and perform an FFT on the shorter record. This will increase the resolution bandwidth.

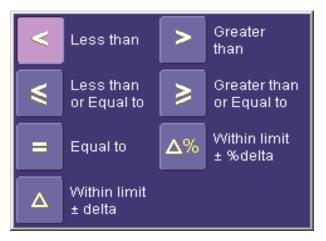
[§] Zero-fill is useful when the source data for the FFT comes from a math operation that shortens the record. This is commonly encountered in filtering operations like enhanced resolution. The missing data points are replaced by data values, whose amplitudes are interpolated to fit between the last data point and th first data point in the record. This guarantees that there is not a first-order discontinuity in the filled data. Since the data at the end of the record is "filled" data, it is advisable to select a weighting window other than rectangular to minimize the effect of the fill on the resulting spectrum.

leave it unchecked.

- 9. Touch inside the **Output** type field, and make a selection from the pop-up menu.
- 10. Touch inside the **Window** field, select a window type.
- 11. Touch inside the **Algorithm** field and select either **Least Prime**^{**} or **Power of 2**^{††} from the pop-up menu.

^{**} The default algorithm is a least primes algorithm that computes FFTs on transform sizes having lengths that can be expressed as factors of $2^{N*}5^{K}$. This is very compatible with the record lengths encountered in the oscilloscope, which are often multiples of 1, 2, 4, 5, or 10.

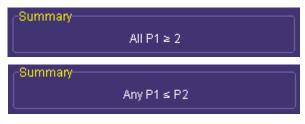
^{††} The other choice is a power of two algorithm where the record lengths are in the form of 2^{N} . The power of 2 algorithm generally runs faster than the least primes algorithm. The price that is paid is a record length that is not the same as the acquired signal. The power-of-two FFT uses the first 2^{N} points of the record. For example, if you acquire 500 points in your trace, the power-of-two FFT would only use the first 256 points.


ANALYSIS

Pass/Fail Testing

Comparing Parameters

Each Pass/Fail input (**Qx**) can compare a different parameter result to a user-defined limit (or statistical range) under a different condition.

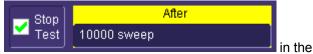

The conditions are represented by these comparison operators:

At the touch of a button, test results can also be compared to these standard statistical limits:

- current mean
- mean + 1 SD
- mean + 3 SD

In Dual Parameter Compare mode, your X-Stream scope gives you the option to compare to each other parameter results measured on two different waveforms. You can set your test to be true if Any waveform or All waveforms fit the criterion stipulated by the comparison condition. Your setup is conveniently shown in the Summary box of the **Qx** dialog. For example:

Mask Tests


You have the choice to do mask testing by using an existing mask, or by using a mask created from your actual waveform, with vertical and horizontal tolerances that you define. Existing masks can be loaded from a floppy disk or from a network.

You can set your mask test to be True for waveforms All In, All Out, Any In, or Any Out. For example, if you select All In, the test will be False if even a single waveform falls outside the mask.

Masks that you create from your waveform can be confined to just a portion of the trace by use of a measure gate. (See Measure Gate for an explanation of how this feature works.)

Actions

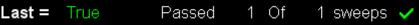
Setting Up Pass/Fail Actions

By touching the Stop Test checkbox

"Actions" dialog, you can set up the test to end after a predetermined number of sweeps that you decide.

You can also decide the actions to occur upon your waveforms' passing or failing, by selecting one or all of the following:

- stop
- audible alarm
- print image of display
- save waveform


Depending on your scope model, you can configure up to 8 pass/fail conditions. The Boolean conditions to determine if your waveform passes are as follows:

All True	All False	
Any True	Any False	
All Q1 to Q4 Or All Q5 to Q8	Any Q1 to Q4 And Any Q5 to Q8	

Setting Up Pass/Fail Testing

Initial Setup

- 1. Touch Analysis in the menu bar, then Pass/Fail Setup... in the drop-down menu.
- 2. Touch the **Actions** tab.
- 3. Touch the **Enable Actions** checkbox. This will cause the actions that you will select to occur upon your waveform's passing or failing a test.
- 4. Touch the **Summary View** to enable a line of text that shows concisely the status of your last waveform and keeps a running count of how many sweeps have passed.

Operator's Manual

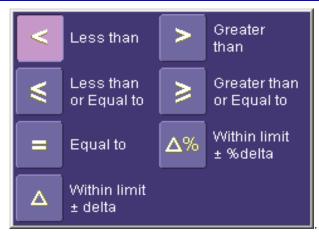
- 5. Touch inside the **Pass If** field, and select a Boolean condition from the pop-up menu.
- 6. If you want to set up the test to end after a finite number of sweeps, touch the Stop Test checkbox. Then touch inside the After data entry field and enter a value, using the pop-up numeric keypad.

button to set the actions to occur

- 7. Under "If", touch either the **Pass** or Fail upon your waveform's passing or failing the test.
- 8. Under "Then", touch the actions you want to occur: stop test, sound alarm, print result, emit pulse, or save the waveform. If you want to have the results printed and your scope is not equipped with a printer, be sure that the it is connected to a local or network printer. See Printing.
- 9. If you want to save your waveform automatically, touch the **Save Setup**. This will take you out of the current dialog and will open the "Save Waveform" dialog. See Saving and Recalling Waveforms.
- 10. Test your Pass/Fail conditions by touching the Force Actions Once button. Press the **Clear All** button to quickly uncheck all checkboxes if you want to change your selections.

Comparing a Single Parameter

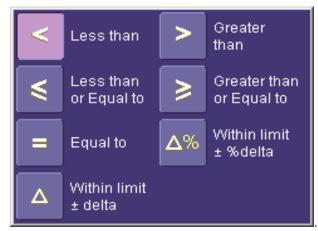
- 1. Touch Analysis in the menu bar, then Pass/Fail Setup... in the drop-down menu.
- 2. Touch a Qx tab; a setup dialog for that position will open.
- 3. Touch inside the **Source1** field and select a source from the pop-up menu.
- 4. Touch inside the Condition field in the main dialog and select ParamCompare
- 5. Touch inside the **Compare Values** field and select **All** or **Any** from the pop-up menu


By selecting AII, the test will be true only if every waveform falls within the limit that you will set. By selecting Any, the test will be true if just one waveform falls within the limit.

6. Touch inside the **Condition** field in the "ParamCompare" mini-dialog and select a math operator from the pop-up menu:

۵%

7. Touch inside the **Limit** field and enter a value, using the pop-up numeric keypad. This value takes the dimensions of the parameter that you are testing. For example, if you are


testing a time parameter, the unit is seconds. If you chose either WithinDeltaPct

WithinDeltaAbs from the Condition menu, you also have the choice of setting the limit by means of the statistical buttons at the bottom of the "ParamCompare" dialog:

Current	Mean +	Mean +						
Mean	1 Sigma	3 Sigma						

Comparing Dual Parameters

- 1. Touch **Analysis** in the menu bar, then **Pass/Fail Setup...** in the drop-down menu.
- 2. Touch a **Qx** tab; a setup dialog for that position will open.
- 3. Touch inside the **Condition** field in the main dialog and select **DualParamCompare**
 - **.**
- 4. Touch inside the **Source1** and **Source2** fields and select a source from the pop-up menu.
- 5. Touch inside the "ParamCompare" mini-dialog field and select a source from the pop-up menu.
- 6. Touch inside the **Compare Values** field and select **All** or **Any** from the pop-up menu. By selecting **All**, the test will be true only if every waveform falls within the limit that you will set. By selecting **Any**, the test will be true if just one waveform falls within the limit.
- 7. Touch inside the **Condition** field in the "ParamCompare" mini-dialog and select a math operator from the pop-up menu:

8. Touch inside the **Limit** field and enter a value, using the pop-up numeric keypad. This value takes the dimension of the parameter that you are testing. For example, if you are testing a time parameter, the unit is seconds.

Δ%

9. If you chose either WithinDeltaPct or WithinDeltaAbs Condition menu, touch inside the Delta field and enter a value.

Mask Testing

- 1. Touch **Analysis** in the menu bar, then **Pass/Fail Setup...** in the drop-down menu.
- 2. Touch a **Qx** tab; a setup dialog for that position will open.
- 3. Touch inside the **Source1** field and select a source from the pop-up menu.
- 4. Touch inside the Condition field in the main dialog and select Mask Test
- 5. From the "Test" mini-dialog, make a selection in the Test is True when group of buttons

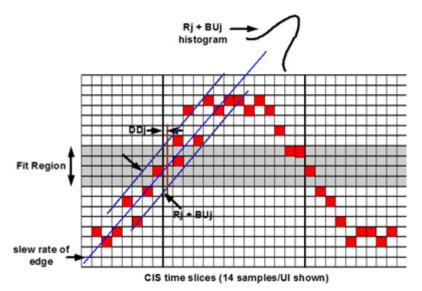
This selection means, for example, that if you select **All In** the test will be False if even a single waveform falls outside the mask.

- 6. From Show Markers, choose whether or not to have mask violations displayed.
- 7. If you are loading a pre-existing mask, touch the **Load Mask** tab, then the **File** button. You can then enter the file name or browse to its location.
- 8. If you want to make a mask from your waveform, touch the **Make Mask** tab.

WE-OM-E Rev A

from the

- 9. Touch inside the **Ver Delta** and **Hor Delta** fields and enter boundary values, using the pop-up numeric keypad.
- 10. Touch the **Browse** button to create a file name and location for the mask if you want to save it.
- 11. Touch the **Gate** tab, then enter values in the **Start** and **Stop** fields to constrain the mask to a portion of the waveform. Or, you can simply touch and drag the Gate posts, which initially are placed at the extreme left and right ends of the grid.


WAVEEXPERT SDA

Introduction to WaveExpert SDA

The SDA software is standard on the SDA 100G and optional on the NRO 9000, and uses the Coherent Interleaved Sampling (CIS) timebase to acquire samples of a serial data signal or clock. SDA does not operate using the sequential timebase, so it is not available on the WE 9000. The serial data analysis software measures the jitter on the acquired signal and provides readouts for its components: total, random, deterministic, BUj, and data-dependent jitter. In addition to these readouts, a number of graphical views of the jitter are also supplied.

WaveExpert SDA Theory

The SDA software uses waveforms from the CIS acquisition mode. This mode is used exclusively to measure jitter because it provides the ability to lock to a repeating bit pattern, thus displaying a voltage-vs.-time waveform that can be used to separate the data-dependent jitter. Another very powerful feature of the CIS timebase that is exploited by the jitter software is its ability to acquire an exact number of samples over each bit or UI. The number of samples per UI is settable in the timebase from 8 to 2048, and the exact bit rate is determined during locking of the timebase which, because it employs a phase-locked loop, provides a stable phase reference against which the timing of the signal is measured.

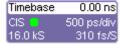
The figure above shows how the coherent sampling clock provides a sequence of time slices of the waveform. These time slices are fixed throughout the signal acquisition process, while the digitizer divides the amplitude into vertical slices. The signal is, therefore, sampled against a fixed grid, and any variations in amplitude or phase are measurable by number of "hits" in each x,y cell. The raw jitter data is captured by accumulating the samples in a horizontal slice across this grid. Note that because the WaveExpert can acquire up to 500M samples in a single waveform, a grid would

contain over 3x1014 cells if all of the samples were used to accumulate signal data. Clearly, this is far too much storage to be practical, so the grid is actually a construct consisting of only the vertical slices around the edges and the digitizer levels within the horizontal slice. The waveform samples from multiple acquisitions are summed within the zones around the data transitions so that statistics can be accumulated.

As shown in the figure, a waveform is acquired by the CIS timebase, and the data samples are examined around each transition within the horizontal slice defined by the fit region. A best-fit line is drawn through the samples on each edge and the intersection of this line with the center of the fit region is used to measure the average displacement of each edge from its ideal location in time, given by the selected number of CIS timebase samples in each unit interval. The average displacement for each transition is plotted versus each bit, and the peak-to-peak value of this plot gives the data dependent jitter. The distribution of samples around the center line for each edge is caused by random and uncorrelated (to the data pattern) jitter. A separate Rj + BUj histogram is measured for each edge, and all of these histograms are summed to measure the overall RJ + BUj distribution. Note that these histograms are summed simply by adding the bins, since they are all zero mean.

The Rj + BUj histogram is converted to a probability density function by normalization to an area of 1 and analysis on a normalized Q-scale. This analysis breaks the measured distribution into two normal (Gaussian) distributions whose mean values are separated by the bounded, uncorrelated jitter (BUj). The standard deviation of each Gaussian is set so that the tails fit the distribution on the left and right sides. The average of the standard deviations, by convention, gives the random jitter (Rj).

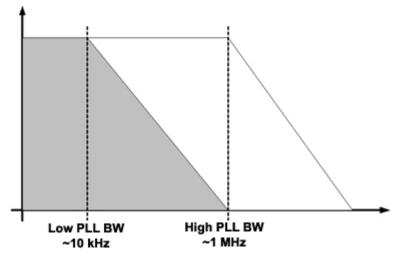
Total jitter is computed by convolving the DDJ, BUJ, and RJ distributions and then determining the cumulative distribution function (CDF) by integrating the convolved distributions. The CDF plots the probability of an edge transition occurring at a displacement greater than a given value as that value is varied from the nominal crossing time to some maximum. The plot of the CDF from 0 to 1 bit interval gives the bathtub curve and the opening of this curve at the selected bit error rate is the complement of the total jitter for that BER.


Initial Setup for Jitter Measurement

Jitter analysis is accessed by selecting Analysis from the menu bar, then Serial Data from the drop-down menu. Two related measurements are available from the Serial Data Analysis dialog: Mask Test and Jitter. Mask testing allows you to measure the signal eye pattern against a compliance mask from the relevant standard. Jitter testing measures the timing variations of the signal transitions relative to a stable timing reference at the nominal bit rate. Jitter is expressed as peak-to-peak total jitter at the selected bit error rate, and as random (Gaussian), deterministic, data dependent, and uncorrelated components.

Horizontal				Close
Operation Mode	Sample Mode	Time Base	Signal Input	
Scope		Time/Division 50.0 ns	Signal Standard 10G-9.9	
	SEQ	Delay Set To Zero Time	Find Bit Rate Rate 39.800000 Gbit/s	Input Clk Rate : 9950000 GHz
F DR		Max Samples Samples/UI 128 MS 512 Bits	Find Std. Pattern Pattern PRBS7	PLL Bandwidth High

Before jitter measurements can be taken, the instrument timebase must be set up properly. Jitter measurements require the CIS timebase primarily because this timebase allows for pattern locking -- displaying the signal as a voltage vs. time trace -- and the acquisition speed is maximized (10 MS/s). Jitter measurements are not supported using the sequential timebase. The following steps should be followed to set up the timebase:


- 1. Connect the signal to an available sampling module in the scope mainframe of the appropriate bandwidth.
- Connect a bit clock, synchronous to the data signal, to the CLK/Prescale input. If a clock is not available, the optional clock recovery module can be used to supply a clock (see the section on the PPG-E135 in this manual).
- 3. Touch the CIS button in the horizontal dialog to activate the CIS timebase.
- 4. Press the **Find Rate** button in the **Horizontal** dialog. The green dot in the **Timebase** descriptor label indicates that the CIS timebase has locked to the clock.

- 5. Verify that the proper bit rate is displayed in the **Bit Rate** field of the **Horizontal** dialog. If a sub-rate clock is being used (½, ¼, etc. of the bit rate), enter the divisor (2, 4, etc.) into the **Ext. Divider** control prior to touching the **Find Rate** control.
- 6. The default setting of the **PLL Bandwidth** control is High. This is the normal setting for most jitter measurements. The low setting is designed for testing very low jitter signals, down to 10 kHz. The PLL settings are shown in the figure above.

Effect of PLL Loop Bandwidth on Measured Jitter

The setting of the PLL loop bandwidth control in the WaveExpert timebase can have a large impact on the measured jitter. The figure below shows the passband for the phase-locked loop.

The loop will track and remove any jitter above the cutoff frequency. As a result, there will be essentially no jitter in the CIS sampling clock above the cutoff. Below the cutoff, the jitter in the CIS sampling clock will track the jitter in the clock signal applied to the **CLK/Prescale** input. The signal displayed on the oscilloscope screen shows the jitter between the CIS sampling clock and the signal under test for all jitter rates above the selected PLL cutoff.

If, for example, the signal under test has a large amplitude jitter component at a rate less than 1 MHz, as is common for many commercial serial data signals, setting the PLL loop bandwidth to **Low** will result in a much higher observed jitter on the screen. This is because the low loop bandwidth reduces the jitter in the timebase for rates down to 10 kHz and, thus, increases the relative jitter between the signal under test and the timebase.

Very low jitter signals, however, will exhibit lower observed jitter when the Low PLL loop bandwidth setting is used. These signals typically have very low jitter at low rates (less than 1 MHz), so the low loop bandwidth reduces the CIS sampling clock jitter and reveals the lower jitter of the signal under test. In this case, the jitter of the signal under test is lower than the CIS timebase jitter of the WaveExpert.

The jitter noise floor of the WaveExpert is 600 fs rms when the CIS timebase is used and 250 fs rms for the HCIS (high CIS) timebase. If the clock applied to the WaveExpert is "clean," that is, it has very low jitter compared to the jitter on the signal under test, then using the narrow loop bandwidth will not show any additional jitter on the signal under test, but it will reduce the jitter in the instrument timebase. In this case the Low setting should be used to achieve the best jitter noise floor.

Measuring Jitter

The main **Serial Data Analysis** dialog provides access to all of the necessary controls for measuring jitter. The primary controls include the signal source, crossing level, fit height, bit rate, pattern length, and sample density. The latter three items are normally set by the acquisition settings, as described in "Initial Setup for Jitter Measurement." The **Use Acq. Settings** control determines where these settings are made.

- 1. Select **Serial Data...** from the **Analysis** drop-down menu.
- 2. Select the desired source in the signal source control. This can be any channel, math, or memory trace.
- 3. The Level is field determines the level at which the timing of each edge is measured. This control can be set in percent or as an absolute voltage (or optical power level when an optical module is being used). The percent setting determines the level based on the amplitude of the most recent acquired waveform as a percentage of the mean '1' level and mean '0' level, and is updated on each subsequent acquisition. The absolute level uses the selected voltage or power level for all acquisitions. Find Level automatically sets the absolute threshold based on the most recent acquired waveform. The preferred setting for jitter measurements is the absolute level.
- 4. Set Fit Height to the desired size. The default of 15% is best for the broadest class of waveforms. When a data waveform is "stressed" (using ISI, for example), the amplitude of some transitions could be within the fit region, which will cause overestimation of jitter. In these cases, reduce the fit region so that the lowest amplitude bit is well above the fit region.
- 5. The **Use Acq. Settings** checkbox should be checked if an active signal is being measured. This setting applies the timebase settings to the jitter measurement.
- 6. The **Check Scope Setup** button allows you to verify that the key acquisition parameters are optimized for jitter measurement. For each setting that is found, you will be prompted to require adjustment or not. The system will give a choice of whether to fix it automatically, not to change it, or to fix this and all other adjustments that are found.
- 7. If a stored waveform is being measured, the bit rate, pattern length, and sample density must be entered manually. These settings are not stored with the waveform so they must be stored separately. One technique is to use the settings in the file name for the stored waveform, for example: "40Gbps prbs7 256samples.trc"

- a. Uncheck the Use Acq. Settings checkbox.
- b. Enter the bit rate.
- c. Enter the pattern length in UI or bits.
- d. Enter the sample density in samples per UI.
- 8. Press the Jitter button, then check the On checkbox to start jitter measurements.

Serial Data Controls

The Serial Data Analysis dialog contains the basic setup controls for jitter and eye pattern measurements. The left side of the menu contains the measurement selection controls and signal source selection. The right side of the menu contains the signal configuration controls.

Mask and Jitter Controls

These controls select the measurement that will be performed when the **On** control is checked. The Mask Test automatically centers the eye on the grid and accumulates voltage/time samples in a persistence map, which can be viewed either in gray scale or color format.

Check Scope Setup

The **Check Scope Setup** control scans the system settings and signal type, and selects the optimum setup for the most accurate jitter measurements. The following settings are verified:

- Acquisition mode (must be set to CIS)
- CIS timebase PLL must be set to the "high" setting
- Signal bit rate (must be set in the CIS timebase)
- Timebase setting (must be set so that at least one complete repetition of the data pattern is captured)
- Automatically sets the samples per UI to 256

For each setting, you are prompted to either skip or fix a setting that is found to be out of range. Additional choices allow you to fix the current setting, to fix any other settings without prompting, or to exit from the Check Scope Setup function altogether.

Signal

The signal section allows for the selection of the source, which can be any of the four active channels, a memory trace, or any one of the eight math traces. The signal must be a voltage-vs.-time waveform captured using the CIS timebase. Other types of waveforms will result in unpredictable results.

The **Clear Sweeps** button resets the acquisition, and zeroes out all averages and persistence maps. This control is also replicated by the front panel **Clear Sweeps** button.

Crossing Level

The "Crossing Level" controls allow you to select the amplitude at which the Fit Height is centered and the size of the fit height. There are two modes for this control: Percent and Absolute. Percent mode is the default and sets the level relative to the amplitude of the signal. The Fit Height is set to 15% by default and defines the vertical range over which the histogram for each edge in the pattern is measured. Fit Height affects how the jitter breakdown is determined when a stressed eye is being measured. Eye patterns are "stressed" by adding ISI (from a length of cable or backplane, for example) and by adding periodic jitter to the signal. While the periodic jitter impacts mainly the timing, ISI can have an impact on the rise time and amplitude of the signal. High levels of ISI can reduce the rise time of the signal significantly and can lead to increased random jitter measurements if the fit height is large. The default is optimum for most cases but when measuring severely stressed eyes, the fit height may require adjustment. For signals with large amounts of ISI, the fit height may need to be reduced below 15%. In cases where there is very low iitter. increasing the fit height will allow more data to be used in the measurement, giving higher accuracy.

The Absolute selection allows the setting of an absolute level for jitter measurements. The absolute level is in volts or watts, depending on the module (electrical or optical) in the channel. Fit Height is in volts (or watts), and the %target allows the setting to be made as a percentage. The **%target** and **Fit Height** controls are linked; changing one of the controls automatically updates the other.

The **Find Level** control sets the absolute level to the center of the signal amplitude. The control does not update until the **On** checkbox is checked.

Absolute and Percent modes differ in that the absolute level is fixed once the Find Level button is selected, whereas the 50% level is computed on each waveform acquisition.

Signal Characteristics

The "Signal Characteristics" section is used to set the acquisition parameters. The current settings displayed are taken from the acquisition settings in the Horizontal dialog when **Use Acq. Settings** is checked. Unchecking this checkbox allows the bit rate, pattern length, and sample density to be changed. This control is checked by default, and should remain checked whenever active channels are being measured. The controls must be set when a stored waveform whose acquisition settings are different from the current horizontal settings is being measured.

The "Signal Type" is set in the Horizontal dialog and its current setting is displayed in the Jitter dialog. The signal type determines the bit rate and the set of compliance masks that are used for mask testing. Although the bit rate is set automatically when the signal type is selected, it can be changed using the **Bit Rate** control or by pressing the **Find Rate** button in the Horizontal dialog.

Jitter Setup Dialog

The Jitter dialog contains all the controls for displaying results, as well as different views of the jitter. Jitter displays include the bathtub curve, eye pattern, data dependent jitter vs. bit (synchronous n-cycle plot), data dependent jitter histogram, random and uncorrelated jitter histogram, Q-scale fit, and edge fit. A set of checkboxes at the bottom left corner of the Jitter dialog turns these individual measurements on and off.

Measure Time

The **Measure Time** controls are used to set up times for jitter tests. The **Measure Then Stop** button runs the acquisition system for the amount of time set in the Measure Time control, and then stops by placing the trigger in **Stop** mode. During acquisition, the eye pattern and jitter histogram are updated very rapidly, but no measurements are made until the acquisition is complete. On completion of acquiring data for the specified time, the jitter measurements are made. The advantage of this control is that the maximum data set is taken for the selected time period because there is no measurement overhead.

Repeating Pattern

The two controls in this section select the jitter parameter view. By default, both of these controls are checked. **Show Jitter Values** toggles the display of the jitter parameters at the bottom of the grid on and off.

Repeating Pattern selects the type of jitter breakdown that is performed. When the data signal consists of a repeating pattern, each edge of the pattern is measured separately to determine its jitter distribution and offset caused by data dependent jitter. If the data pattern is very long or does not repeat, unchecking this control uses the histogram of the zero crossing in the eye pattern to determine the random and deterministic jitter. In the case of a nonrepeating pattern, it is not possible to separate DDj from BUj as it is with a repeating pattern. The random and deterministic jitter measured when the pattern is not repeating is known as the effective jitter because it is based on a dual Gaussian distribution model, which is designed to predict the jitter at very low bit error rates. In general, the effective Dj is smaller and the effective Rj larger than those measured with a repeating pattern.

Show +/-DCD

This control sets the display of signed DCD values in the jitter table. Duty cycle distortion (DCD) is a measure of the difference in width of positive- and negative-going pulses in the data stream. A positive DCD indicates that, on average, the positive-going pulses are wider and negative DCD indicates that the negative-going pulses are wider. The sign does not affect the overall jitter Tj or Dj values. When unchecked, the sign is not reported.

DDj Edges

DDj edges Both	The DDj histogram shows the distribution of average location of each edge in the pattern. This histogram shows one count per edge in the waveform so, for example, if a 127 bit pattern is being measured with a 50% transition density, there would be a population of 63 in the DDj histogram. The DDj Edges control sets whether this histogram includes only positive, only negative, or both positive and negative edges. This setting does not affect the overall jitter values reported in the table.

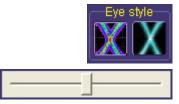
Log(BER)

The log(BER) control sets the desired bit error rate at which the total jitter is measured. The control is scaled in powers of 10 so a value of -12, for example, means a bit error rate of 10⁻¹². The total jitter is measured by combining the histograms from the random bounded and correlated jitter, using convolution. The combined distribution is integrated to compute the cumulative density function (CDF), which gives the total probability as a function of the peak-to-peak jitter. The width of the CDF at a given probability is the total jitter, and the probability is simply 1-BER where the BER is the bit error rate.

Histogram

The "Histogram" control group adjusts the scale of the Rj+BUj histogram when a repeating pattern is being measured, or the scale of the total jitter histogram when a random pattern is being measured. The **Reset** button sets the horizontal scale to 10 ps/div while the zoom in and zoom out controls adjust the scale in or out, in a 1-2-5 sequence. The **Tdiv** control allows the scale to be set to any arbitrary value.

Edge Fit


N-Cycle

starting with the first transition in the captured waveform. The actual UI at which this transition occurs depends on the data pattern, since consecutive "0" or "1" values will not have a transition. This control is not available (grayed out) when the **Edge Fit** checkbox is unchecked.

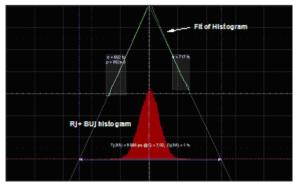
The number in the "Edge Fit" **show#** control is the transition number,

The "N-Cycle" group controls the zoom of the N-cycle jitter plot (DDj vs. bit). Selecting **All** displays the entire bit pattern. Selecting **Min** or **Max** centers the transition with the minimum or maximum data dependent jitter respectively, and sets the scale to +/-10 UI on either side of this transition. The zoom control is valuable when the data pattern is long and individual transitions are difficult to see.

Eye Style

The eye pattern in the jitter display can be viewed either as a color persistence map or as a gray-scale persistence map. This control selects between the two. The color map makes it easier to see very low probability events while the gray scale image makes it easier to see underlying trends in the signal. For example, it is often easier to view high noise signals in the gray-scale format because the average value stands out better.

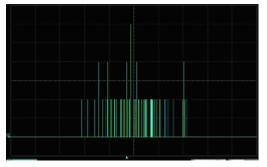
The slide control adjusts the saturation level of the


color-graded eye pattern display.

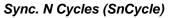
Jitter Setup Dialog -- View Selector

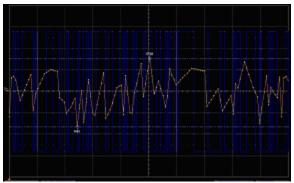
This set of controls enables or disables the available jitter views when measuring jitter in the repeating pattern mode.

This display shows the histogram of the combined random and bounded uncorrelated jitter (BUj). This is the histogram of timing differences between the CIS timebase sampling clock and the signal transitions. The histogram contains timing information for every edge in the data pattern within the fit region (see figure). The slope of the edge in the fit region is used as the mean value for the histogram of each edge.


Fit of Histogram (RjBUjFit)

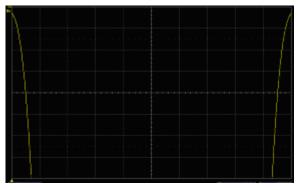
The two green lines are the renormalized Q-scale of the histogram. They appear as lines for the case where the histogram is Gaussian; but, in general, the upper portion is curved while the lower portion is linear. The light gray lines that extend the length of the grid are the best-fit lines to the linear portion of the Q-scale within the light-gray rectangles on either side of the Q-scale plot. The lines are extended to the top of the grid, and their separation at this point gives the bounded portion of the histogram or the BUJ.


The distance between the lines at the vertical displacement corresponding to the selected bit error rate gives the peak-to-peak total Rj + BUj jitter. Shown at the bottom of this plot is the equivalent Q value for this BER.


The slope of each line is expressed as the sigma value shown in the corresponding gray box. Additionally, the box on the left shows the value of rho, which is the normalization factor. The rho value is shown for informational purposes only and is set automatically.

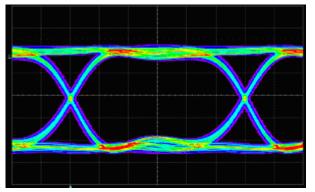
DDj Histogram (DDjHist)

This is the histogram of the mean values of each transition in the data pattern as measured in the Synchronous n-cycle plot. The horizontal units of this plot are seconds, with zero in the center, "early" edges to the left, and "late" edges to the right. Dimensionless, the vertical scale indicates the number of occurrences of each delay. The population of the histogram is exactly equal to the number of edges in the data pattern. For example, a PRBS7 pattern, which has 64 transitions, will have a DDj histogram with a population of 64.



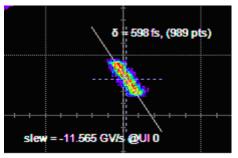
The synchronous n-cycle plot displays the error in the mean location of each signal edge, relative to its ideal location. An ideal bit pattern at a given bit rate will have transitions at multiples of 1/B seconds, where B is the bit rate. Dispersion and other effects in the data channel, however, result in certain bits within a pattern arriving early or late. The mean crossing time of each edge in the pattern is determined as shown in the figure above.

The intersection of the best-fit line through all the samples on a given edge with the threshold set by the **Crossing Level** control determines the mean crossing point for that edge. The synchronous n-cycle plot displays the mean crossing for each edge. The vertical center of the plot is zero error, with points above this representing "early" edges and points below the line representing "late" edges. The vertical scale depends on the amount of data dependent jitter (DDj) and the


peak-to-peak range of the plot gives the value of DDj. The horizontal scale of this plot is in units of time, and the blue trace in the background depicts the bit sequence as a reference for each transition. The horizontal range of the synchronous n-cycle plot covers the entire bit pattern and, in cases where the pattern is thousands of bits long, it may be impossible to see individual edges in the plot. Two cursors on the plot show the location of the maximum (earliest) edge and minimum (latest) edge, which define the peak-to-peak range.

Bathtub Curve (BathTub)

This is a plot of the bit error rate of the signal under test as a function of the sampling point within the eye. The horizontal scale of the bathtub is in units of UI, with the left edge being 0 UI and the right at 1 UI. The left and right edges of the plot are equivalent to the crossing points of the eye diagram. The vertical scale is the logarithm of the bit error rate with the top of the graph representing a BER of 1 (10^{0}) and the bottom at 10^{-16} . The scale is 2 decades per division. The characteristic "bathtub" results because the bit error rate rapidly decreases to a low level in the center of the curve and is high at the sides.


Eye Diagram (JitEye)

This diagram shows the eye diagram of the signal data used in the jitter measurement. The plot is a true persistence map that expresses each voltage and time value with its frequency of occurrence as a color or gray scale. The eye diagram accumulates data from all acquisitions until the **Clear Sweeps** button is pressed, or any other acquisition parameter is changed, such as the bit rate, samples/UI, number of samples, pattern length, etc. Note that this eye diagram differs from the one

shown in the mask test mode or the eye mode in that the vertical scaling is not set to place the "0" and "1" levels at 1.5 and 6.5 vertical divisions and it is not displayed with a compliance mask.

Edge Fit (EdgeFit)

Jitter measurements are computed by accumulating data around each transition of a repeating data pattern. The edge fit display shows the measured data from a selected edge as a persistence map that extends vertically to the range defined by the Fit Region control, and horizontally over the range of jitter for that edge. Through a jitter dialog control, the displayed edge is settable from 0 to the maximum for the data pattern, which is usually 1/2 the number of symbols, but dependent upon the number of actual transitions in the signal. Cursors on the persistence map show the slew rate of the edge and the displacement from its ideal location, the value of which is displayed as the lowercase Greek letter delta. The total number of samples measured on the selected edge is shown in parentheses.

UTILITIES

Status

The status read-only dialog displays system information including serial number, firmware version, and installed software and hardware options.

To Access Status Dialog

- 1. In the menu bar, touch Utilities.
- 2. Touch the **Status** tab.

Remote communication

The Remote dialog is where you can select a network communication protocol, establish network connections, and configure the Remote Control Assistant log. The choice of communication protocols is limited to TCPIP and GPIB.

Note: GPIB is an option and requires a GPIB card to be installed in a card slot at the rear of the scope. **Note:** The instrument uses Dynamic Host Configuration Protocol (DHCP) as its addressing protocol. Therefore, it is not necessary to set up an IP address if your network supports DHCP. If it does not, you can assign a static address in the standard Windows 2000 network setup menu.

The Remote Control Assistant monitors communication between your PC and scope when you are operating the instrument remotely. You can log all events, or errors only. This log can be invaluable when you are creating and debugging remote control applications.

To Set Up Remote Communication.

If you are connecting the scope to a network, first contact your Information Systems administrator. If you are connecting the scope directly to your PC, connect a GPIB or Ethernet cable between them.

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Remote** tab.
- 3. Make a **Port** selection:**TCPIP** (transmission control protocol/Internet protocol) or **GPIB** (general purpose interface bus). If you do not have a GPIB card installed, the GPIB selection will not be accessible.
- 4. If you are using GPIB, set a GPIB address by touching inside the **GPIB Address** data entry field and enter an address.
- 5. Press the **Net Connections** button; the Windows **Network and Dial-up Connections** window appears.
- Touch Make New Connection and use the Windows Network Connection Wizard to make a new connection; or, touch Local Area Connection to reconfigure the scope's connection if it is already connected to the network.

To Configure the Remote Control Assistant Event Log

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Remote** tab.
- 3. Touch inside the Log Mode data entry field.

- 4. Select Off, Errors Only, or Full Dialog from the pop-up menu.
- 5. To export the contents of the event log to an ASCII text file, touch the **Show Remote Control Log** button: the "Event Logs" pop-up window appears. Touch inside the **DestFilename** data entry field and enter a file name, using the pop-up keyboard. Then touch the **Export to Text File** button.

Hardcopy

Printing

For print setup, refer to Printing.

Clipboard

This selection prints to the clipboard so you can paste a file into another application (like MS Word, for example).

To Print from the Clipboard

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Hardcopy** tab.
- 3. Under **Colors**, touch the **Use Print Colors** checkbox if you want the traces printed on a white background. A white background saves printer toner.
- 4. Touch the **Grid Area Only** checkbox if you do not need to print the dialog area and you only want to show the waveforms and grids.
- 5. Touch the **Print Now** button.

File

Choose **File** if you want to output the screen image to storage media such as floppy drive or hard drive. When outputting to floppy disk, be sure to use a preformatted disk.

To Print to File

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Hardcopy** tab, then the **File** icon.
- 3. Touch inside the **File Format** data entry field and select a graphic file format from the pop-up menu.
- 4. Under **Colors**, touch the **Use Print Colors** checkbox if you want the traces printed on a white background. A white background saves printer toner.
- 5. Touch inside the **Directory** data entry field and type the path to the folder you want to print to, using the pop-up keyboard. Or touch the **Browse** button and navigate to the folder.
- 6. Touch inside the **File Name** data entry field and enter a name for the display image, using the pop-up keyboard.
- 7. Touch the **Grid Area Only** checkbox if you do not need to print the dialog area and you only want to show the waveforms and grids.
- 8. Touch the **Print Now** button.

E-Mail

The instrument also gives you the option to e-mail your screen images, using either the MAPI or SMTP protocols. Before you output to e-mail from the Utilities dialog, you first have to set up the e-mail server and recipient address in **Preference Setup**.

To Send E-mail

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the Hardcopy tab, then the E-mail button.
- 3. Touch inside the **File Format** data entry field and select a graphic file format from the pop-up menu.
- 4. Under **Colors**, touch the **Use Print Colors** checkbox if you want the traces printed on a white background. A white background saves printer toner.
- 5. Touch the **Prompt for message to send with mail** checkbox if you want to include remarks with the image.
- 6. Touch inside the Hardcopy Area field and make a selection from the pop-up menu:

Grid Area Only	DSO Window
Full Screen	Menu Only
MessageLine Only	DockedDialog Only
RHSDialog Only	

Grid Area Only	Sends only the waveforms and whatever annotation is contained in the grid.
DSO Window	Sends the grid area plus open dialogs.
Full Screen	In case the scope display is windowed Windowed (reduced), sends the scope UI and revealed desktop.
Menu Only	Sends only the menu bar at the top of the scope.
Message Line Only	Sends only the status line at the bottom of the screen.
Docked Dialog Only	Sends only the dialog area of the screen, if a

			dialog is open (docked).			
ri	For Math setup displays, sends only the right-hand side mini-dialog					
	Zoom Select		Close			
	Ce 120.0 ns Scali 50.0 ns x 4.00	zontal nter s e / div Var. Qut RHS dial	Vertical Center 0.0 mV Scale / div 50.0 mV x 1.00 Var. in Qut	Reset Zoom		

7. Touch the Print Now button

Date & Time

The instrument gives you the choice of manually setting the time and date or getting it from the Internet. If you elect to get the time and date from the Internet, you need to have the scope connected to the Internet through the LAN connector on the rear panel. You can also set time zones and daylight savings time.

To Set Time and Date Manually

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Date/Time** tab.
- 3. Touch inside each of the **Hour**, **Minute**, **Second**, **Day**, **Month**, and **Year** data entry fields and enter a value, using the pop-up numeric keypad.
- 4. Touch the Validate Changes button.

To Set Time and Date from the Internet

The Simple Network Time Protocol (SNTP) is used.

- 1. Ensure that the scope is connected to the Internet through the LAN connector at the rear of the scope.
- 2. In the menu bar touch Utilities, then Utilities Setup... in the drop-down menu.
- 3. Touch the **Date/Time** tab.
- 4. Touch the **Set from Internet** button.

To Set Time and Date from Windows

- 1. In the menu bar touch **Utilities**, then **Utilities Setup...** in the drop-down menu.
- 2. Touch the **Date/Time** tab.

- Touch the Windows Date/Time button
- 4. Use the **Time & Date Properties** window to configure the time, including time zone.

Date	e/Tin	ne P	rope	ertie	:5			<u>?</u> ×
Da	te &	Time	Tir	ne Za	one			
	<u>D</u> ate		<u> </u>					<u>T</u> ime
	Octo	ober	•		2004	ł	÷	and the second sec
	S	М	T	W	Т	F	S	
						1	2	
	3	4	5	6	7	8	9	
	10	11	12	13	14	15	16	
	17	18	19	20	21	22	23	
	24	25	26	27	28	29	30	
	31							2:27:02 PM 🗧
TL								
Current time zone: Eastern Daylight Time								
							С	K Cancel Apply

Options

Use this dialog to add or remove software options. For information about software options, contact your local LeCroy Sales and Service office, or visit our Web site at http://www.lecroy.com/options.

Options that you purchase, such as JTA2, add performance to you instrument. This added performance is seen in the new math functions or parameters that you can choose from when doing Measure or Math setups.

Preferences

Audible Feedback

You can elect to have audible confirmation each time you touch a screen or front panel control.

1. In the menu bar touch Utilities; then touch Preferences in the drop-down menu.

236

2. Touch the "Audible Feedback" **Enable** checkbox so that the scope emits a beep with each touch of the screen or front panel control.

Auto-calibration

You can choose to have your instrument automatically recalibrate itself whenever there is a significant change in ambient temperature. If you do not enable this option, the scope will only recalibrate at startup and whenever you make a change to certain operating conditions.

- 1. In the menu bar touch **Utilities**; then touch **Preferences** in the drop-down menu.
- 2. Touch the "Automatic Calibration" Enable checkbox.

UI Language Selection

The "Language" field allows you to select a language, other than English, for the UI at any time. To change the current selection, touch inside the "Language" field and select a language from the pop-up menu.

Performance Optimization

You can set up the scope to optimize either calculating speed or display speed. If the display update rate is of primary concern to you, optimize for Display. If acquisition and analysis are more important, optimize for analysis. Optimizing for analysis can be useful when persistence or averaging is used, giving higher priority to waveform acquisition at the expense of display update rate.

The choices are presented as a spectrum with highest values at the extremes:

- 1. In the menu bar touch **Utilities**; then touch **Preferences** in the drop-down menu.
- 2. Touch one of the optimization icons.

Offset Control

As you change the gain, this control allows you to either keep the vertical offset level indicator stationary (when **Div** is selected) or to have it move with the actual voltage level (when **Volts** is selected). The advantage of selecting **Div** is that the waveform will remain on the grid as you increase the gain; whereas, if **Volts** is selected, the waveform could move off the grid.

Note: Regardless of whether you select **Volts** or **Div**, the "Offset" shown in the channel setup dialog always indicates volts. However, when **Div** is selected for the Offset Control, the offset in volts is scaled proportional to the change in gain, thereby keeping the division on the grid constant.

- 1. In the menu bar touch **Utilities**; then touch **Preferences** in the drop-down menu.
- 2. Touch the Acquisition tab.
- 3. Under Offset Setting constant in:, touch either the Div or Volts button.

Delay Control

As you change the timebase, this control allows you to either keep the horizontal offset indicator stationary (when **Div** is selected) or to have it move with the trigger point (when **Time** is selected).

The advantage of selecting **Div** is that the trigger point will remain on the grid as you increase the timebase; whereas, if **Time** is selected, the trigger point could move off the grid.

Note: Regardless of whether you select **Time** or **Div**, the "Delay" shown in the timebase setup dialog always indicates time. However, when **Div** is selected for Delay In, the delay in time is scaled proportional to the change in timebase, thereby keeping the division on the grid constant.

- 1. In the menu bar touch **Utilities**; then touch **Preferences** in the drop-down menu.
- 2. Touch the Acquisition tab.
- 3. Under **Delay Setting constant in:**, touch either the **Div** or **Volts** button.

E-mail

Before you can send e-mail from the scope, it must first be configured.

- 1. In the menu bar touch **Utilities**, then **Preference Setup...** in the drop-down menu.
- 2. Touch the **E-mail** tab.
- 3. Choose an e-mail server protocol: MAPI (Messaging Application Programming Interface) is the Microsoft interface specification that allows different messaging and workgroup applications (including e-mail, voice mail, and fax) to work through a single client, such as the Exchange client included with Windows 95 and Windows NT. MAPI uses the default Windows e-mail application (usually Outlook Express). SMTP (Simple Mail Transfer Protocol) is a TCP/IP protocol for sending messages from one computer to another through a network. This protocol is used on the Internet to route e-mail. In many cases no account is needed.
- 4. If you chose MAPI, touch inside the Originator Address (From:) data entry field and use the pop-up keyboard to type in the instrument's e-mail address. Then touch inside the Default Recipient Address (To:) data entry field and use the pop-up keyboard to enter the recipient's e-mail address.
- 5. If you chose SMTP, touch inside the SMTP Server data entry field and use the pop-up keyboard to enter the name of your server. Touch inside the Originator Address (From:) data entry field and use the pop-up keyboard to type in the instrument's e-mail address. Then touch inside the Default Recipient Address (To:) data entry field and use the pop-up keyboard to enter the recipient's e-mail address.
- 6. You can send a test e-mail text message by touching the **Send Test Mail** button. The test message reads "Test mail from [name of scope's email address]."

Acquisition Status

For each general category of scope operation, you can view a summary of your setups. These dialogs are not accessible through the Utilities menu, but are instead accessed from the menu bar drop-down menus. The categories are as follows:

- Vertical -- select Channels Status . . . from drop-down menu
- Timebase -- select Acquisition Status . . . from drop-down menu
- Trigger -- select Acquisition Status . . . from drop-down menu
- Math -- select Math Status . . . from drop-down menu

In addition to these dialogs, summaries are also provided for XY setups, memory (M1-M4) setups,

and time stamps for sequence mode sampling.

Service

This button provides access to service dialogs, which are for the sole use of LeCroy service personnel. A security code is required to gain access.

Show Windows Desktop

Touching the **Show Windows Desktop** button in the main "Utilities" dialog minimizes the instrument application to reveal the underlying desktop. To maximize the application, touch the shortcut icon:

Touch Screen Calibration

Touching the **Touch-Screen Calibration** button starts the calibration procedure. During the procedure, you will be prompted to touch the center of a small cross in 5 key locations on the touch screen. Because sufficient accuracy cannot be achieved using your finger, use a stylus instead for this procedure. The calibration has a ten-second timeout in case no cross is touched.

To avoid parallax errors, be sure to place your line of sight directly in front of each cross before touching it.

CUSTOMIZATION

Customizing Your Instrument

The instrument provides powerful capability to add your own parameters, functions, display algorithms, or other routines to the scope user interface without having to leave the instrument application environment. You can customize the instrument to your needs by using the power of programs such as Excel[™], Mathcad[™], and MATLAB[™], or by scripting in VBS. Whichever method you use, the results appear on the instrument's display together with the signals that you started with. This ability offers tremendous advantages in solving unique problems for a large range of applications, with comparatively little effort from you.

Accessing the scope's automation interface from within an XDEV custom processor (VBScript, Mathcad, MATLAB, Excel, etc.) is NOT recommended.

Cases where the scope's behavior cannot be guaranteed, or worse, cases which can cause the scope's software to crash include the following:

1. Changing "Upstream" Controls

'Upstream' controls are considered to be any control that, if changed, could provoke an infinite loop. An example would be a VBScript processor, in F1, which uses C1 as a source. If this processor changes the offset or vertical scale of C1 as a result of examining its input (C1) data, an infinite loop could occur. This could eventually cause the scope software to crash. This is not limited only to changing upstream channel controls, but includes any upstream processing also.

2. Accessing Other Results

Access to results (waveform, measurement, etc.), other than the scripting processor's own inputs, may cause incorrect measurements. The reason for this is simple: the scope contains a complex algorithm to determine in which order results are computed. This algorithm ensures that all inputs required by a processor are computed before the processor itself. If a VBScript processor decides to access, via automation, results other than those supplied to its inputs, the scope's dependency algorithm cannot be used. Therefore, the results accessed may not be coherent (they may be from a previous acquisition, or worse, could cause an infinite computation loop).

3. Reconfiguring Math or Measurements

Reconfiguring (adding or removing) Math and/or Measurements from within a custom processing function is not recommended, especially when the reconfiguration would cause the custom processor to remove itself.

Introduction

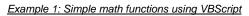
Instrument customization provides these important capabilities:

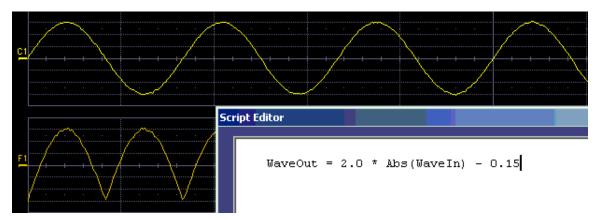
- You can export data to programs, without leaving the instrument environment.
- You can get results back from those programs, and display them on the instrument, without leaving the instrument application environment.
- Once the result is returned, you can perform additional scope operations, such as measuring with cursors, applying parameters, or performing additional functions on the waveform, in exactly the same way as for a normal waveform.
- · You can program the scope yourself.

The instrument does not just provide connectivity with data downloads to other programs. It provides true customizable interaction with these other programs, and allows you to truly customize

the scope to do the exact job you want it to do. The advantages to this are many:

- You can use the standard processing power of the instrument to do most of your calculations.
- You only need to write the function, parameter, display algorithm, etc. that specifically applies to your need and that the instrument doesn't contain.
- You can view the final result on the instrument display, and use all of the instrument's tools to understand the result.
- You can do additional processing on the result by applying either standard instrument parameters, functions, etc. to the returned result, or even more powerfully, adding chained customized functions. For example, you can do an Excel calculation on a result with a MATLAB function applied to it.

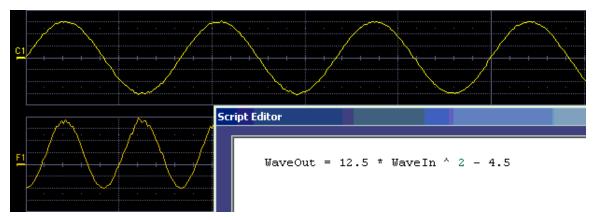

Solutions

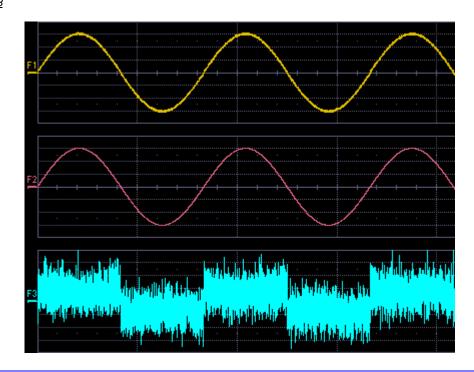

Engineers do not buy equipment; they buy solutions. But what solutions can be reached from a set of instrument waveform data? In principle, anything that can be logically derived from those data, given the limitations of signal-to-noise ratio and processing time. Here are some examples of what can be done with a customized instrument:

- Changing the units of a grid to joules, newtons, amps, etc.
- Creating a new waveform by manipulating the data of one or two input waveforms.
- Creating a new waveform without using any of the input data.
- Creating a new parameter by manipulating the data of one or two input waveforms.
- Changing a vertical scale or a horizontal scale from linear to non-linear.

You don't have to use all the data from the input waveforms: you can select data from one or more segments, which need not be aligned in the two-input waveforms.

Examples




WaveOut is the waveform being returned to the instrument (F1 in this case). WaveIn is the input waveform (C1 in this case) You can see that the F1 result is displayed on the scope, and can be

processed further.

Example 2: Another simple math functions using VBScript

Example 3 below doesn't use the input data at all. The middle waveform (F2) is a "golden waveform", in this case a perfect sine (subject to 16-bit resolution), that was created using a VBScript. The lower trace (F3) is a subtraction of the acquired waveform (upper trace) and the golden waveform. The subtraction (of course) contains all the noise, but it also shows the presence of a very small square wave signal.

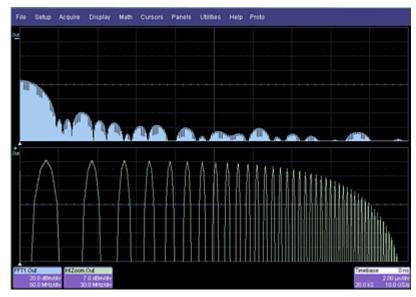
Example 3

Here is the VBScript that produced the "golden sine" (F2 above):

```
Frequency = 3000000.0 ' Frequency of real data
SampleTime = InResult.HorizontalPerStep
Omega = 2.0 * 3.1416 * Frequency * SampleTime
Amplitude = 0.15 ' Amplitude of real data
For K = 0 To LastPoint
newDataArray(K) = Amplitude * Sin(Omega * K)
Next
OutResult.DataArray(True) = newDataArray ' Data in volts
```

OutResult.DataArray is the waveform returned to the scope and displayed on the scope as the F2 waveform.

Example 4

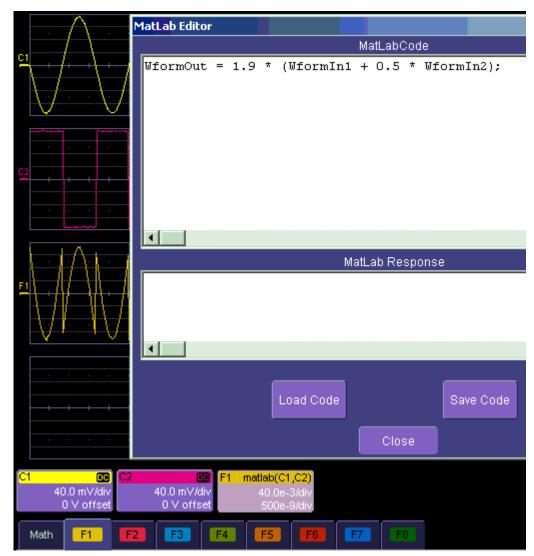


Example 4 is a measurement of DVI (Digital Video Interface) Data-Clock skew jitter measurement, using a VBScript to emulate the PLL.

In this example, a customer was not able to probe the desired clock signal. The only probing point available was the output differential clock signal (C2). However, that clock was a factor of 10 slower than the clock embedded in the data signal (C3). By using a VBScript to create a clock waveform of the appropriate frequency (waveform F1), the customer was able to display and measure data-clock skew using a LeCroy instrument function and parameter.

```
WE-OM-E Rev A
```

Example 5



Next, a logarithmic vertical scale, for which the script can be found here. (Most scripts would be far simpler than this one.)

Frequency response curves are frequently drawn on a logarithmic scale. The upper trace is a frequency spectrum of a square wave after enhanced resolution has been applied. It was created using instrument functions. The lower trace is the first lobe of the FFT display. But with a logarithmic frequency scale. Click here for the VBScript.

In addition to VBScripting, MATLAB, Mathcad, or Excel can also be used to generate a result. The F1 trace (shown below in Example 6) was calculated in MATLAB (F1=WformOut) from C1 (WformIn1) and C2 (WformIn2). The same calculation could also be done in Excel by using a simple formula in a spreadsheet cell.

<u>Summary</u>

The examples above illustrate only the capability to use VBScript and MATLAB. The instrument with the LeCroy XMAP software option allows you to use Excel, Mathcad, MATLAB, and VBScript in this manner. Of course, you will need to load Excel, Mathcad, or MATLAB in the scope (VBScript does not require any additional software) to take advantage of the capability. You can think of these functions as "subroutines" of the instrument's main software, which take in waveform data and other variables like vertical scale and offset, and horizontal scale and offset. These functions then return a waveform or a parameter as required. In addition, you can view the calculated data directly

in Excel, MATLAB, or Mathcad, if you desire.

What is Excel?

Excel is a program within Microsoft Office. With it you can place data in the cells of a spreadsheet, calculate other values from them, prepare charts of many kinds, use mathematical and statistical functions, and communicate with other programs in Office. From the instrument you can send data to Excel (where processing can take place) and return the results to the instrument.

What is Mathcad?

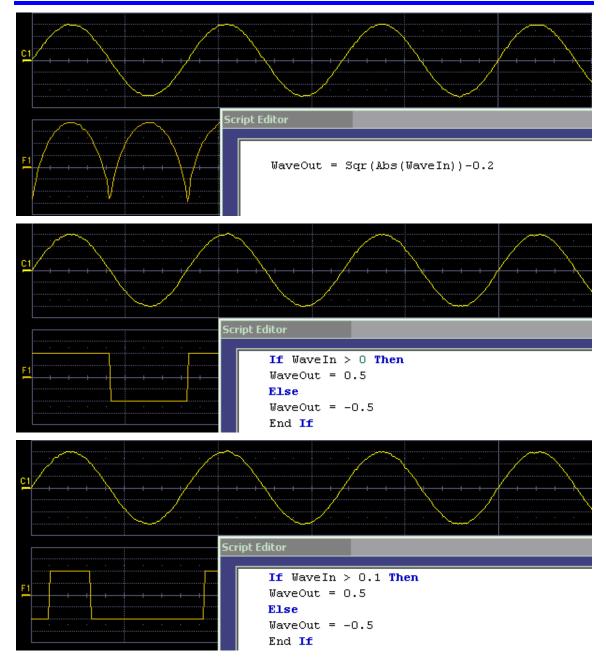
Mathcad is a software package from MathSoft. It provides an integrated environment for performing numerical calculations and solving equations, and communicating with other programs. Results can be presented in tabular or graphical form.

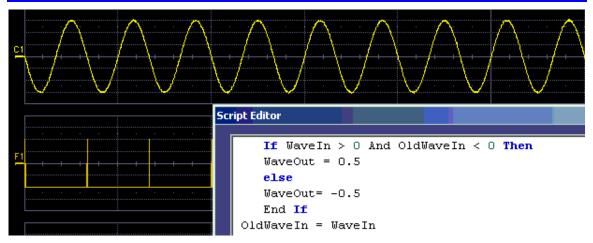
What is MATLAB?

MATLAB is a software package from MathWorks that provides an environment for work in computation and mathematics. An interactive language and graphics are provided.

What is VBS?

VBS is a programming language, but you don't write it in a special environment such as C++ or Visual Basic; you write it within your own application. In the instrument, a few clicks or button pushes will get you into an editing panel where you can write what you want. You cannot crash the scope, or in any other way interfere with its workings, because the system is completely protected.


A product of Microsoft and a subset of Visual Basic, VBS can be learned very quickly if you have some experience in any programming language. The VBS processing function can collect a number of useful variables from the scope, including waveform data and useful variables such as volts per division and time per division. The output from a script can be a waveform or a parameter, and you can choose your own values for variables such as volts per division.


The idea of a VBS function is that you start with an input waveform, operate on some or all of the values with a script, and show the result on a scope grid, like any other waveform.

VBScript customization is built into the instrument, so no additional programs need to be loaded to take advantage of this capability.

The following diagrams were made by changing a small part, in some cases just one line, of a standard VBScript. VBS is a well-known standard language, with excellent support documentation, and it is easy to use in several different environments.

Wave Expert

These examples are purely illustrative, but you can easily imagine that with a VBScript you can add value to the scope in a very short time. This gives you an instrument that does exactly what you want, time after time, by using your stored setups and scripts.

What can you do with a customized instrument?

If you require a result that can be derived logically from the input waveform, you can do it. Many calculations can be done with remarkably small scripts, but if you have no time for scripting, you can use one of the proprietary packages, such as Excel, MATLAB, or Mathcad, which offer immense processing power.

Scaling and Display

Scripting and programming allow a large variety of opportunities. You may, for example, be using transducers. If so, you can change the units of your waveforms, and write N (newtons), J (joules) and so on, and you can introduce scaling factors. If the transducers are non-linear, you can correct for that, too. You can also transform horizontal scales and vertical scales by manipulating the data. Logarithmic scales in amplitude and frequency are often required. Squaring and taking square roots are needed in certain applications. Here is a picture showing some graphs related to white noise, showing ways of detecting small deviations from the true distribution. The lower two graphs were generated and placed in one trace using a VBScript.

In the next example, four graphs are placed in one trace.

Golden Waveforms

This is a rich field for VBS. An example was given earlier. The only limits to the shapes that can be generated are the vertical resolution and the number of samples.

A practical example – DVI Data-Clock skew

The next example is a measurement of DVI Data-Clock skew jitter measurement, using a VBScript to emulate the PLL. A solution to a practical measurement problem was shown earlier.

These are just a few of the many solutions that can be created.

WE-OM-E Rev A

248

Number of Samples

The various math packages can process samples as follows:

Excel	65,535 samples
Matlab	400 MS
Mathcad	5 MS

Calling Excel From Your Instrument

Calling Excel Directly from the Instrument

Excel can be directly called from the instrument in two ways:

Using a function	F1 through Fx [The number of math traces available depends on the software options loaded on your scope. See Specifications.]	Excel returns a waveform
Using a parameter	P1 through Px [The number of parameters available depends on the software options loaded on your scope. See Specifications.]	Excel returns a parameter

In both cases, one call to Excel can use two separate waveforms as input.

Notes:

Excel has a calculation algorithm of 64,000 points (32,000 if you have created a chart in Excel). Therefore, make sure that your acquisition has less than this number of points if you are going to use an Excel calculation.

To use this capability, you must have the LeCroy XMAP software option and Excel loaded in your instrument. Select **Minimize** from the instrument's **File** menu to access the Excel program directly.

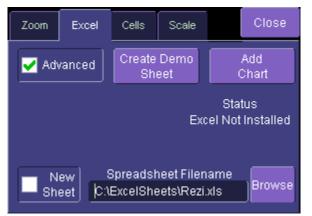
How to Select a Math Function Call

The Excel math function is selected from the **Math Operator** menu, where it appears in the **Custom** group.

How to Select a Parameter Function Call

The Excel Parameter function is selected from the **Select Measurement** menu, where it appears in the **Custom** group.

The Excel Control Dialog


Once you have invoked an Excel call, you will see a dialog at the right of the screen, allowing you to control the zoom, Excel properties, linking cells, and scale of the output trace from Excel:

```
WE-OM-E Rev A
```


Entering a File Name

If you uncheck the New Sheet checkbox, you can enter the file name of an existing file.

Create Demo Sheet Calls up a default Excel spreadsheet.

Add Chart Adds charts of your waveforms to Excel. You can go into Excel and create as many charts as you want.

Organizing Excel Sheets

The **Cells** tab allows you to organize your Excel chart. When placing the components in the sheet, be careful to avoid over-writing needed information, especially when you are using multiple input waveforms. As depicted here, the instrument panel has been pasted over the Excel sheet.

	A	В	С	D	E	F		G	Н		J
1	Correlatio	_	-		L	Source1	So	urce2	Result		0
2		. Notheol	· ino noio	loighaid	NumSam		_	502	502		
3					VerUnits	V	V		V		
4					HorUnits	S	S		S		
5					HorStart	-1E-0	7	-1E-07	-1E-07		
6					HorStop	1E-0	7	1E-07	1E-07		
7					VerStart	-0.	2	-0.2	-91279.6		
8					VerStop	0.	2	0.2	88925.75		
9					HorPerSt			4E-10	4E-10		
10					HorOffset	-1E-0	7	-1E-07	-1E-07		
11											
12											
13											
14											
15	0.07 <mark>1</mark> 594	-0.12188	0.091712		Zoom	Excel (ells	Scale	с	lose	
16	0.001404	-0.1 <mark>2</mark> 031	0.062945							_	
17	0.101074	-0.12188	0.07 709		Cell Refe	erences		L a	ita Hea	ader	
18	0.017084	-0.12344	0.0555				iable) Sourc	el Sou	wa 1	
19	0.067932	-0.125	0.050612		🔽 incl	aaci		· · ·			
20	0.039526	-0.12344	0.06493		🚬 Head	iers	✓	A15	F2		
21	0.164331	-0.12344	0.049881			Er	iable] Sourc	e 2 – Sou	rce 2	
22	0.046661		0.039346		Add		-	🗕 B15	G2		
23	0.144519	-0.125	0.08103		Labels		able) Outp	ut <u>Ou</u>	tput	
24	-0.01219	-0.125	0.022005					C15	IL 00	ipai	
25	0.110425	-0.12812	0.03 164				<u> </u>				
26 27	0.084753	-0.12656 -0.12969	0.038025								
27	0.066321	-0.12969	-0.03082								
20 29	-0.05781	-0.12656	-0.03062								
30	-0.05781	-0.12969	-0.02124				_				
31	0.000317	-0.12989	-0.03324								
31	0.000317	-0.13129	-0.0595								

There are three arrays of data for the three waveforms: up to two inputs and one output. There are corresponding small arrays of information about each trace.

Scale Setting the Vertical Scale

The vertical scale of the output waveform from Excel may be set in three ways:

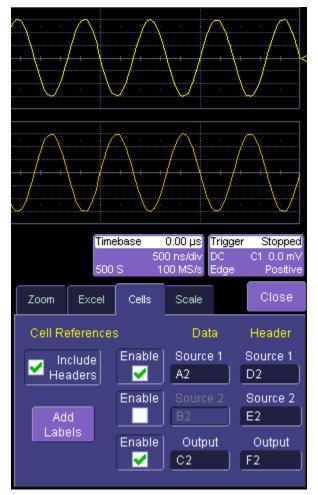
Automatic	For each acquisition, the instrument fits the waveform into the grid.
	For one acquisition, click Find Scale ; the instrument fits the current waveform into the grid. All subsequent acquisitions will use this scale until you make a change.
	The scale is taken from the specified cells in the Excel sheet, H2 through H10 in the example above, where cell H2 was specified as the top of the data set, as depicted below.

E	F	G	н	1	J	K		L	M	N
	Source1	Source2	Result		7000	Excel	Cels	Scale		Close
NumSam	502	502	502		Zoom	Excel	Cets	Scale		Ciuse
VerUnits	V	V	٧		Scale F	Result				
HorUnits	S	S	S				Useth	e min/ma	ocvalue	s of the
HorStart	-1E-07	-1E-07	-1E-07		Autor	natic		sed wav		
HorStop	1E-07	1E-07	1E-07				Autous	cale whe	•	
VerStart	-0.2	-0.2	-91279.6		Man	lual		cale Pres		
VerStop	0.2	0.2	88925.75		_			e output		Adoriz
HorPerSt	4E-10	4E-10	4E-10		From	Sheet		rt) from s		
HorOffset	-1E-07	-1E-07	-1E-07							

Trace Descriptors

The next figure explains the meanings of the descriptors for each trace.

С	D	E	F	G	Н
n two noisy	y signals		Source1	Source2	Result
Samples ir	n trace	NumSam	502	502	502
Vertical un	Vertical units		V	V	V
Horizontal	units	HorUnits	S	S	S
Left edge o	of grid	HorStart	-5E-08	-5E-08	-5E-08
Right edge	of grid	HorStop	1.5E-07	1.5E-07	1.5E-07
Bottom of	grid	VerStart	-0.2	-0.2	-0.32585
Top of grid		VerStop	0.2	0.2	0.266995
Time per s	Time per sample		4E-10	4E-10	4E-10
Trigger pos	Trigger position		-5E-08	-5E-08	-5E-08


Multiple Inputs and Outputs

If you invoke two or more instrument parameter functions or waveform functions that call Excel, you will find that they all refer to the same spreadsheet by default. Thus, your spreadsheet can use the data from several waveforms, and you can derive many different combinations of output parameters and waveforms, including some of each, from your spreadsheet. You only have to be careful about the positioning of your cell ranges within the sheet so that no conflicts occur.

Because filling cells in the spreadsheet is a relatively slow process, all unwanted sources (inputs) should be left disabled (unchecked). For example, if you want one waveform and two parameters derived from the data of three waveforms, you can have one function with both sources enabled, one with one source enabled, and one with no sources enabled. The alternative is to use one input in each function.

Simple Excel Example 1

In this example we use Excel to invert or negate a waveform. The first figure shows a part of the screen. The upper trace is the original signal. The lower is the result from Excel.

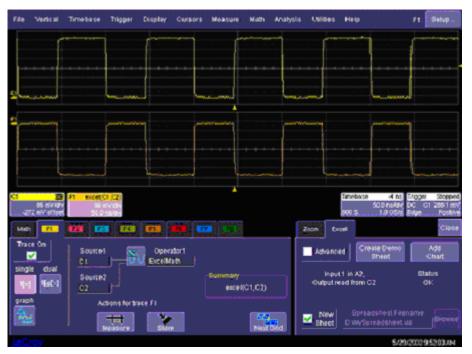
The dialog is the one that controls the location of the data in the Excel worksheet.

The input data are in columns A and B (though, only the first is used) and the output is in column C. All have been set to start at row 2, allowing space for a title in row 1.

```
WE-OM-E Rev A
```

Columns D, E and F contain the headers for the three waveforms. These are the set of numbers that provide the description of the scope settings, such as vertical scale and offset, and number of samples.

	A	В	С	D	E	F
1						
2	-0.00781		0.007813	502	502	502
3	-0.03281		0.032813	V	V	V
4	-0.06094		0.060938		S	S
5	-0.08438		0.084375	-2.5E-06	-2.5E-06	-2.5E-06
6	-0.10781		0.107813	2.5E-06	2.5E-06	2.5E-06
7	-0.125		0.125	-0.2	-0.2	-0.2125
8	-0.13906		0.139063	0.2	0.2	0.214063
9	-0.14688		0.146875	1E-08	1E-08	1E-08
10	-0.14688		0.146875	-2.5E-06	-2.5E-06	-2.5E-06
11	-0.14844		0.148438	~	~	\sim
12	-0.13906		0.139063	-/	-/	/ \
13	-0.12812		0.128125	-/-		
14	-0.11094		0.110937		/\	
15	-0.09375		0.09375	1	f	_/
16	-0.06563		0.065625			
17	-0.04219		0.042188			
18	-0.01406		0.014063	τ	\wedge	<u> </u>
19	0.015625		-0.01563	· · · · · /	/	(
20	0.04375		-0.04375	+ {++/	+ + + /	·
21	0.06875		-0.06875			
22	0.09375		-0.09375		\sim V	. V
23	0.1125		-0.1125	_		
24	0.129688		-0.12969	base 0	.00 µs Trigge	er Stopped
25	0.142188		-0.14219		ns/div DC	C1 0.0 mV
26	0.146875		-0.14688	S 100) MS/s_Edge	Positive
27	0.148438		-0.14844	Cells	Scale	Close
28	0.146875		-0.14688		Scale	
29	0.1375		-0.1375		Data	Header
30	0.125		-0.125	·		
31	0.10625		-0.10625	Enable	Source 1	Source 1
32	0.084375		-0.08438		A2	D2
IÎ I	▶ ► \She	et1 / Sheet2	2 / Sheet3 /	Enable		Source 2
Rea	idy				B2	E2
18	itart 🛛 🚮	<i> ا</i>	9	Enable	Output	Output
	1 197	Microsoft Wo	rd Le	. 🔽 🛛	<u>C2</u>	F2


In this figure, the panel has been pasted onto the Excel sheet for comparison:

To get the output values in column C, we set C2 = -A2 and copy this formula down the column. This is the only action needed in Excel, and can be seen in the next figure:

	C2	•	= =-A2			
	Name Box	В	С	D	E	F
1						
2	-0.00781		0.007813	502	502	502
3	-0.03281		0.032813	V	V	V
4	-0.06094		0.060938	S	S	S
5	-0.08438		0.084375	-2.5E-06	-2.5E-06	-2.5E-06
6	-0.10781		0.107813	2.5E-06	2.5E-06	2.5E-06
7	-0.125		0.125	-0.2	-0.2	-0.2125
8	-0.13906		0.139063	0.2	0.2	0.214063
9	-0.14688		0.146875	1E-08	1E-08	1E-08
10	-0.14688		0.146875	-2.5E-06	-2.5E-06	-2.5E-06
11	-0.14844		0.148438			
12	-0.13906		0.139063			
13	-0.12812		0.128125			
14	-0.11094		0.110937			
15	-0.09375		0.09375			
16	-0.06563		0.065625			
17	-0.04219		0.042188			
18	-0.01406		0.014063			
19	0.015625		-0.01563			
20	0.04375		-0.04375			

Simple Excel Example 2

In this example we use Excel to invert or negate a waveform. The first figure shows a part of the instrument screen. The upper trace (C1) is the original signal. The lower trace (F1) is the result calculated in Excel and displayed on the screen.

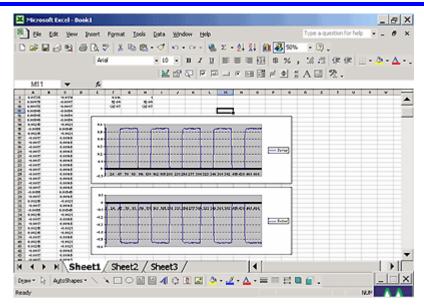
The input data is in columns A and B (though by default, only a single input/column is used), and the output is in column C. All have been set to start at row 2 (which allows for a header in row 1).

To create this waveform, you would simply do the following:

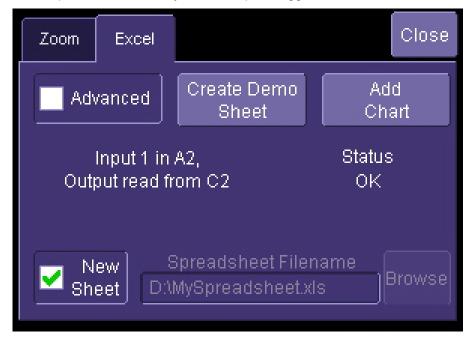
- 1. Ensure that your acquisition has no more than 64 kpts (the Excel calculation limit).
- 2. Choose a function, and select ExcelMath as **Operator1** for the function. Excel will open automatically in the background.

Wave Expert

					· · · · · /		
	Select Math O	perator					
	. Category	Ch	oices				
	All		Name	Description			
·····	Functions		ExcelMath		el. Transfers 1 or 2 v resulting waveform.	vaveforms into	
	Basic Math		MathcadMath	function	m using a user spec		
	Custom	1	MATLAB math	Produces a wavefor function	m using a user spec	ified MATLAB	
		۵v	BS Math script	Visual Basic script	which produces a wa	veform	
	Filter						
86 mV -272 mV of1							r <mark>igger Stop</mark> C C1 288.1 dge Pos
1ath F1	Functions						CI
race On							Add
ngle dua	Graphing						Chart Status
í(×) f(g(> raph	Jitter			Cance	el		OK
			Store	Next	New Srid	Spreadsheet Fi D:\MySpreadshee	

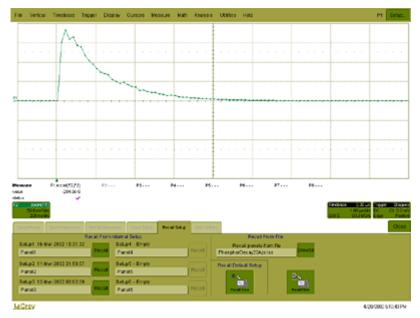

- 3. Choose File, Minimize from the menu bar to minimize the instrument display and open the Excel program.
- 4. Create your formula for each data point in column A (in this case, our formula for cell C2 is -A2, copied for the entire column), as shown here

2	}8e £dt	Yew	insert Figmat	Iools (jata <u>Wi</u> nd	ow Help			Type	a question f	or help 🛛 🗷	- 8 ×
2	🛩 🖬 🔒	8	B. 17 X	h 🚯 -	00.	Cr + 🝓	Σ • ĝi }	U 🗿 🕹	100% 💌 (9.		
			Arid		- 10 -	BIU		1 23 8 9	6 . 10	23 (in 6	a 🗉 - 3	5 - <u>A</u> -
												_
			4 - 12		188 61.	ofn 1 test	108	8回#소	1 B A E	8 12 +		
_	C2	•	fx = A2	~		6						
1	A	8	¢	D	E	F	G	н		J	K	L .
	0.545653		0.0000			502		502				-
2	0.01355		-0.54585			50/2 V		502 V				
5	0.01355		-0.01355			s		S				
• 5	0.009749		-0.00975			-2.5E-07		-2.5E-07				
8	0.005949		-0.00696			2.546-07		2546-07				
7	-0.00165		0.001653			-0.072		2.040-07				
8	0.002148		-0.00215			0.616		-1				
é.	0.005949		-0.00595			1E-09		1E-09				
0	0.002148		-0.00215			-2.5E-07		-2.5E-07				
ř	0.002148		-0.00215			12.00107		12.00107				
2	-0.00165		0.001653									
3	-0.00165		0.001653									
4	0.002148		-0.00215									
5	-0.00165		0.001653									
6	-0.00165		0.001653									
7	-0.00165		0.001653									
8	-0.00545		0.005454									
9	-0.00165		0.001653									
0	0.002148		-0.00215									
1	-0.00165		0.001653			/		•			100	


- 5. Retrigger the scope (if it is not currently triggering)
- 6. Return to the program

Note that the only action that was needed in Excel was to create the formula in column C for each data point in column A. The instrument automatically opens Excel, puts the waveform data in the correct columns, and returns the calculated data back to the display as the chosen F trace. This Excel-calculated trace can have further measurements or math calculations performed on it, if desired.

You can also create a chart of the data in Excel automatically and view the data there.


Simply press the **Add Chart** button in the instrument's Excel dialog and a chart of the input (top chart) and Excel calculated output (bottom chart) will be automatically created in the spreadsheet. The chart will be updated automatically as the scope is triggered.

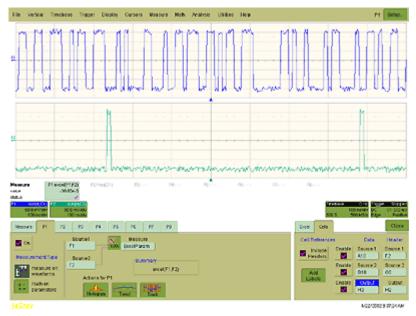
Exponential Decay Time Constant Excel Parameter (Excel Example 1)

This example calculates the time constant of an exponentially falling pulse, such as the light output of a phosphor.

The first figure shows a typical pulse, including pseudo-random noise, generated by a VBScript.

The pulse was generated by a formula of the form $e^{(1-t/TC1)} * e^{-t/TC2}$, where TC1 and TC2 are time constants, The requirement is to measure the time constant TC2, using the portion of the trace where TC1 has negligible effect. This was done using Function F1, which is not a part of the measurement process.

For the actual measurement, Parameter P1 was set up as an Excel call. In Excel, the selected portion of the trace was converted to logarithms, and the Excel function SLOPE was used, as shown here:


D		B 🖪 💞 🛛				Σ <i>f</i> *				100%	0.4								
Ari	l		• B <i>I</i>			%,	•.0 •.•	ŧ,	#	- 🔌 -	<u>A</u> -								
_	H3				1,021:051)														_
	A	В	С	D	E	F		G		н	- I		J	K	L	1	M		
	Phosphor	Decay Curve	9			Source		irce2			Log ba								- 4
!		0			NumSamples		00		Output		е	Out	put					_	E
}		0			VerUnits	V			-2.	040E-07	2.7182	282	1						δ
ļ.		0			HorUnits	S											_		8 —
j		0			HorStart	-2E-		^{0.0} T											F
ì		0			HorStop	1.8E-		0.06+0	U 1.0E-07	2.0E+07	3.0E-07	4.0E-07	5.0E+07	6.0E-07	7.0E+07 8.0E	-U7 9.0E	-07	_	6
·		0			VerStart		2.2	.0										-8	
3		0			VerStop		1.2	2.0										_8	6
9		0			HorPerStep	2E-	08	~		~								_8	
0		0			HorOffset	-2E-	07 .3	3.0			$\sim \sim$							_	E
1		0					_					\sim					-	_	E
2	0.0E+0						-4	1.0 -					~					_	Ē
3		8 0.150061	2.0E-08				_							\sim				_	
4		8 0.181934	4.0E-08					5.0							$\sim \sim$		-	_	E
5		8 0.159106	6.0E-08				_								1 A A			_	
6		8 0.164246	8.0E-08				-6	3.0 -										_	ļ
7		7 0.142987	1.0E-07	-1.945														_8	É
8		7 0.139233	1.2E-07	-1.9716			_											_	6 7
9		7 0.116699	1.4E-07				<u> </u>											_	5
0		7 0.103589	1.6E-07					0.2 T									-	_	-
1		7 0.094257	1.8E-07	-2.36173				.18									-	_	
2		7 0.083167	2.0E-07					.16 🕂	٣								-	_	
3		7 0.073969	2.2E-07					.14										_	
4	2.4E-0		2.4E-07	-2.65498				12 +										-8	
5		7 0.067242	2.6E-07					D.1 🔶										-8	
6		7 0.054657	2.8E-07					.08										_	
7		7 0.050171	3.0E-07					.06	- (~							-	_	
8		7 0.044568	3.2E-07					.04		5							-		
9	3.4E-0		3.4E-07				0.	.02		~	~	_					-	_	
0		7 0.041974	3.6E-07				_	0 +										_	
1		7 0.036523	3.8E-07	-3.3098		-	_	0.0E+0	JU	5.0E-	-07	1.0E	-06	13	5E-06	2.0E	-06	_	
2		7 0.035956	4.0E-07	-3.32546											-	_			1
4		t1 / Sheet2 /	Sheet3 /) I C	1
ea	dy																		

Here we see the input data in column B (with a time scale in A) created using the contents of cell F9, Horizontal Per Step. The logarithmic data are in column D, with the time scale repeated in C. The output appears in cell H3, using the formula **=1/SLOPE(D21:D51,C21:C51)**.

Gated Parameter Using Excel (Excel Example 2)

This example calculates a parameter of a waveform, in a region of interest defined by the leading edges of two pulses in a separate waveform.

This figure shows the instrument screen:

The traces were made using VBS scripts in functions F1 and F2, based on pseudo-random numbers to provide noise and varying pulse widths. Randomize Timer: Randomize Timer was used in both scripts to ensure that successive acquisitions produced different data. Script F1 generates pulses with widths that are multiples of a set clock period. F2 generates one pulse in the first half of the time window, and one pulse in the second half. Both pulses are constrained to coincide with the clock pulses of F1. F1 and F2 are used here only as simulations and are not part of the measurement process, which only uses P1.

The call to Excel is made through Parameter P1.

The next figure shows a part of the Excel workbook.

1	A													
л.		8	¢	0 6	F.	. 0	н	1	4	K	- k	- 14	N	
10.1	Gared Me	an of Puls	e Tealin	NumSarri	Sources '		Gaterbleen		Demo 3	ISteam fo	cel Precess	ar .		
÷	Angelique			Vertinits	300	:000	-0.03005		ueno s	Meet .				10 P
î	0.2	-		HotUnits	é (é.	-0 03005			-				- 21
5		-		HarStart	45.02	-55.02								P
6				HorStep	5E-07	5E-07								
67				VerStart *	-0.2	-0.2								
8				VerStep *	0.2	0.2								18
9				HarflerSk	2E-09	2E-09								6
10	-0.16544		0	0 HorOffsot	-68-07	-56-07								10
11	-0.16377		0	0				_		_				1.52
12	-0.15112			0										12
13	-0.15515		0	0	0.2									
14 16	0.146976		0	0	0.15		11 3 1	i ta de la	10.	18 8 18	2			* # A
16	0.14245			0			- 11 II I	וויזהו	1111		1			에 요.
12	0 153833			0	0.1									A
10	0.140564		ŏ	ů.	0.05									
19	0.153925	-0.14343		0										2
20	0 137561	-0.15719	0	0	0		- B 19	517-11	817 L	- MH 811				1
21	0.150588		0	0	-0.05									
22	0.147363			0										
22	0.13913		0	0	-0.1									
러	-0.1636		0	0	-0.15		With U	1111	41.18	1000	an l			
25	-0.16559			0			with a		0.1.4	1.14.16.5				
26	-0.15275		0	0	-02-									
22.28	-0.14007			0						_				
29	-0.14071			0										
30	-0.16062		0	0										
57	-0.16221			ŏ						-				
22	-0.151N			0										
	The field state	rets 70well	2 / 9 eet3 /	r -				141					100.0	ć
	dy.													1

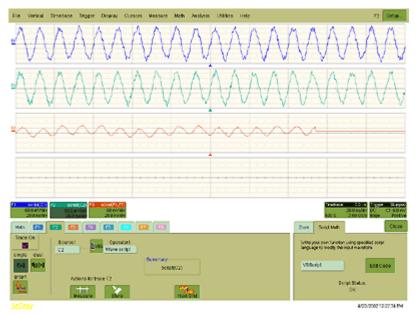
Here we see the gated waveform that has been created in Excel. The Mean parameter during the region of interest (ROI) is placed in cell H3.

How Does this Work?

The amplitude of the signal is about 0.3 volts, and the screen height is 0.4 volts, as derived from cells F7 and Fx. A threshold value for amplitude was calculated by placing 0.5 * (Fy - Fx) in cell A4.

Remember that in the instrument the sources were defined to be A10 and B10. This means that the first point on the waveform will be read into A10, and, since the waveform has 500 points, the last point will be read into A510. The same holds true for F2 and column B, since F2 is assigned as Source2, and data is defined to write into column B starting with cell B10.

To create the gating function in column C, the cell C10 was given the following formula:

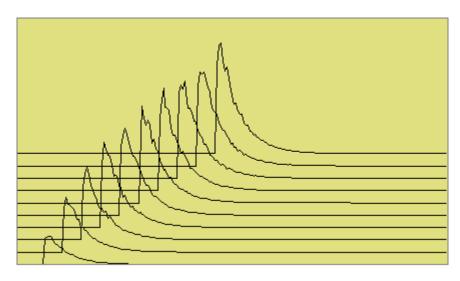

IF ((B10 - B9) > \$A\$4, 1 - C9, C9). This was copied down the column. Column D, the output column, is simply A * C.

The output was defined as cell H3.

The required mean in cell H3 is given by SUM (D10 : D509) / SUM (C10 : C509), for a 500 point waveform.

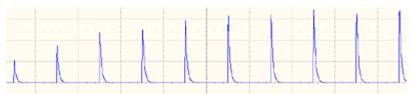
Correlation Excel Waveform Function (Excel Example 3)

This example uses an Excel waveform function to examine the cross-correlation between two signals, which are both noisy sinusoidal segments. The correlation trace is, of necessity, shorter than the input traces.


The noise was generated using pseudo-random numbers. Randomize Timer was included in the VBScript to ensure that the two traces differed, and that subsequent acquisitions differed. Functions F1 and F2 are included only to simulate signals, and are not part of the measurement process, which is performed by F3.

This example used the CORREL (Array1, Array2) function of Excel, as depicted below:

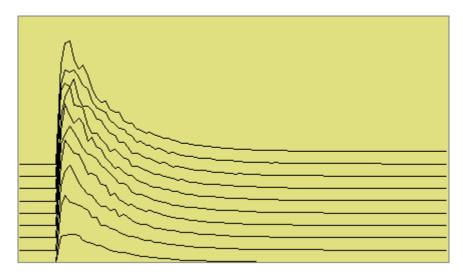
ХM	licrosoft Ex	cel - Correla	te22Apr					
8)	Ele Edit	⊻iew Insert	Format <u>I</u> ool	ls <u>D</u> ata <u>W</u> i	ndow <u>H</u> elp			
	🗳 🔒	a 🕽 🖑	ሯ 🖻 🛱	S 😻 🔊	• CH • 📢	🦉 Σ	<i>f≈</i> 2↓ <u>X</u> ↓	100 🔮 4
Ari	al	¥ 10	в.	/ <u>U</u>		\$ %	, 38 -28	律律
	C15	-	= =COF	REL(SB\$1	5:\$B\$114,/	(15:A114)		
	A	8	С	D	E	F	G	н
1	Correlati	on betweer	n two noisy	/ signals		Source1	Source2	Result
2					NumSam	502	502	502
3					VerUnits	V	V	V
4					HorUnits		S	S
5					HorStart	-1E-07	-1E-07	-1E-07
6					HorStop	1E-07	1E-07	1E-07
7					VerStart	-0.2	-0.2	-0.28044
8					VerStop	0.2	0.2	0.236587
9					HorPerSt			4E-10
10					HorOffset	-1E-07	-1E-07	-1E-07
11								
12								
13								
14								
15	0.023621		-0.02207					
16	0.056354		-0.01667					
17	0.063599	-0.12031	-0.00469					

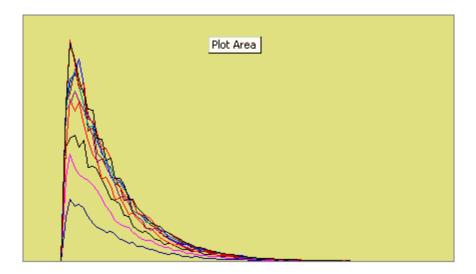

Multiple Traces on One Grid (Excel Example 4)

This example shows how you can place multiple traces in one picture, with only two operations in an Excel sheet. Depicted below is an example from an Excel spreadsheet.

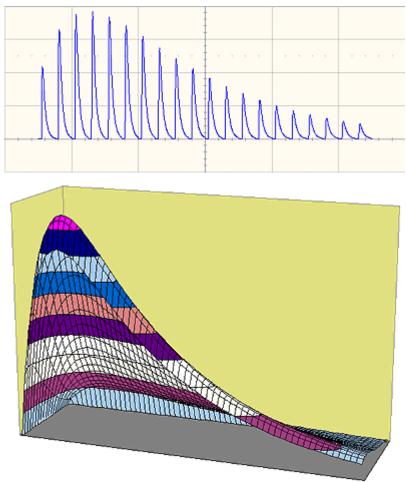
Operator's Manual

Here is an original instrument trace




The method is very simple. First, the waveform is transferred to an Excel spreadsheet by means of an instrument Excel call. Second, two operations are needed in Excel: placing a simple formula in one cell, and copying that formula into a range of cells.

Depicted below is the required Excel formula.


	C134	•	= =8374	4 +0.02				
	A	В	С	D	E	F	G	н
134		0	0.02	0.04	0.06	0.08	0.1	0.12
135		0	0.02	0.04	0.06	0.08	0.1	0.12
136		0	0.02	0.04	0.06	0.08	0.1	0.12
137		0	0.02					
138		0	0.02					
139		0	0.02				٨	
140		0	0.02				1	
141		0	0.02				NT1	
142		0	0.02			. A A I		
143		0	0.02			TUN	1	
144		0	0.02		٨	ועמ	$(\Lambda \times$	
145		0	0.02	Plot Area	$\square AA$	Λ	γ	
146		0	0.02		· AF	Y + Y + Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
147		0.041925	0.02		111	XTX)		
148		0.04436	0.02			~ 7		
149		0.046216	0.02		A A	\sim		
150		0.046002	0.02		ゴマート		-	
151		0.043359	0.02	77				
152		0.035791	0.02		-			
153		0.032135	0.02	0.04	0.06	0.08	0.1	0.12
154		0.030566	0.02	0.04	0.06	0.08	0.1	0.12
155		0.027142	0.02	0.04	0.06	0.08	0.1	0.12
156		0.027667	0.02	0.04	0.06	0.08	0.1	0.12
157		0.023242	0.090343	0.04	0.06	0.08	0.1	0.12
158		0.019092	0.108965	0.04	0.06	0.08	0.1	0.12
159		0.018146	0.097228	0.04	0.06	0.08	0.1	0.12

In fact, the simple expression B374 + 0.02 comprises several components. The original instrument trace is in column B, and the plot is required to start at cell B134. The traces repeat at intervals of 250 cells. Let us call this interval R. If we require a horizontal displacement D, then in cell CN we write B(N + R - D). In this example D is 10. Finally we may want a vertical displacement V, and we write B(N + R - D) + V. In this example, V is 0.02. D and V can be zero if required, as depicted below. All that remains is to copy the formula to the required range of cells.

Using a Surface Plot (Excel Example 5)

WRITING VB SCRIPTS

VBScripting is one of the custom features of your instrument. Others include the ability to work with programs such as Excel, Mathcad and MATLAB.

Types of Scripts in VBS

The instrument's VBS provides two types of script.

- The Waveform Function script allows you to take the data from one or two traces and make a new trace whose values may depend on the values of the input trace.
- The Parameter Function script also takes in the data from one or two traces, but it only has one output. This output is the zeroth element in the output array. It appears as a parameter

value on the instrument's screen. The remainder of the array is currently not used, and is not accessible.

Within both types of script, you can call Excel.

Loading and Saving VBScripts

From the editing panel you can save your script and you can load a previous one. Should you forget to save a script, please note that when you save your setup, it has your current scripts embedded in it. Therefore it is a good idea to save your setup frequently. It is worth saving the script separately as well, because it is saved in a suitable format for printing or off-line editing with Notepad. Note that in both these examples the input data are referred to as InResult.DataArray. You can also write InResult1.DataArray and InResult2.DataArray, which refer to the two input traces. InResult.DataArray always refers to input trace 1. These remarks hold for any script that you write.

Example Waveform Function Script: Square of a waveform

```
' Example script to produce a waveform
This example calculates the square of
the input waveform.
OutResult.Samples = InResult.Samples ' Visible trace length + 1
' Note that a trace of nominal length 1000 comprises data numbered from
' 0 to 1001. The 1001st point is not visible, so you
' normally use points 0 to 1000,
' giving 1001 points and 1000 intervals between points.
startData = 0
endData = OutResult.Samples
LastPoint = endData - 1 ' because the last point is invisible.
ReDim newArray(OutResult.Samples) ' to store the results
unscaledData = InResult.DataArray(False)
' InResult.DataArray(False) provides
' integer data from -32768 to 32767.
' InResult.DataArray(True) provides real data
' in the same physical unit as the vertical scale of the input trace.
ScaleFactor = 1.0 / 32768 ' to make the trace fill the screen.
       For i = 0 To LastPoint
       newArray(i) = ScaleFactor * (unscaledData(i)) ^ 2
       Next
```

Operator's Manual

```
OutResult.DataArray(False) = newArray ' signed long integer data output
Example Parameter Function Script: RMS of a waveform
' Example script to produce a parameter.
' This script calculates the root mean square
' of the input waveform.
' Note that a trace of nominal length 1000 has data from
' 0 to 1001. The 1001st point is not visible, so you
' normally use points 0 to 1000,
' giving 1001 points and 1000 intervals between points.
startData = 0
endData = InResult.Samples
LastPoint = endData - 1 ' because the last point is invisible.
ReDim newArray(InResult.Samples) ' to store the results
unscaledData = InResult.DataArray(True)
' InResult.DataArray(False) provides
' integer data from -32768 to 32767.
' InResult.DataArray(True) provides real data
' in the same unit as the vertical scale of the trace.
Total = 0
        For i = 0 To LastPoint
        Total = Total + (unscaledData(i)) ^ 2
        Next
NewArray(0) = Sqr (Total / (LastPoint + 1)) Place the result in the zeroth
element.
OutResult.ValueArray(True) = newArray ' integer data output
The default waveform function script: explanatory notes
```

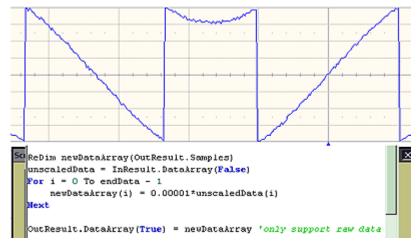
InResult.Samples is the number of points in the incoming waveform.

InResult.DataArray(Boolean) (or InResult1.DataArray or InResult2.DataArray) is the array of input data. If the Boolean is True you get scaled real data in the units of the trace. If the Boolean is false you get unscaled integer data in the range -32768 to + 32767.

The value of InResult.Samples is the total number of data in a trace. It is two more than the nominal value given on the screen. The first point DataArray(0), coincides with the left edge of the screen,

apart from the wobble caused by the trigger-to-sample clock difference. If the trace length is nominally 500, the right edge of the screen coincides with DataArray(500), which is the 501st point. The last point, number 502, is just off the right of the screen, and is never seen. That is why the loop in the script runs only to endData - 1.

OutResult.Samples is the number of data in the output trace, and is set to be the same as the number of data in the input trace. If you set the output length less than the input length, you get a shorter trace, the remainder being made of zeroes. If you try to set the output values to something illegal, you may find that a part of the trace retains the values from a previous acquisition.


If you try to set something outside the bounds of an array, or you make some other error, or something overflows, or you ask for something impossible, such as log(-13), the instrument tells you the line number, and the nature of the problem. Other types of error may not be given the correct line number, for example, if "Next" or "End If" is omitted, because VBS does not know where it should have been.

UnscaledData is simply a copy of the input data set.

ReDim newDataArray(OutResult.Samples) defines an array of data for use as a scratch pad. Dim is short for Dimension, which is used in Visual Basic to declare a variable (even if it only has one element, in which case you omit the size of the array).

InResult.DataArray(False) means that the data are signed integers in the range -32768 to 32767. False is a Boolean value applying to the property Scaled. Scaled data are specified in the units of the vertical scale, such as volts. You get these by putting "True" instead of "False". If you want to make a section of the output trace invisible, you simply set the data values to full scale or bigger, top or bottom.

You can start with the unscaled data (False) as input, and then set the output data to scaled data (True), and you can go from scaled to unscaled. Using scaled data, an overflow will make a picture like this:

You can also start with True and convert to False, but in this case overflows will cause an error message.

Operator's Manual

Anything after a single quotation mark on a line will not be used by the instrument. This feature is intended for comments, for example

```
' This is a comment.
A = Amp * Sin(Omega * T) Calculate the output.
```

InResult.DataArray and OutResult.DataArray are only to be used as shown in the default scripts and in the example scripts: you cannot refer directly to individual elements of these arrays. You have to use your own arrays, in this example, unscaledData and newDataArray. You are not allowed to write statements like the following:

```
Y = InResult.DataArray (17)
```

OutResult.DataArray (257) = Z

Some parts of the default script must not be changed because they are a part of the interface. These are **highlighted** in the following script .

' TODO add your custom code here accessing OutResult and InResult objects

' Here's a small example that just inverts the waveform.

```
OutResult.Samples = InResult.Samples
```

```
startData = 0
```

```
endData = OutResult.Samples
```

```
newNumPoints = endData - startData
```

```
ReDim newDataArray (OutResult.Samples)
```

```
unscaledData = InResult.DataArray (False)
```

```
For i = 0 To endData - 1
```

```
newDataArray (i) = - unscaledData (i)
```

Next

OutResult.DataArray (False) = newDataArray _' only support raw data

The four highlighted quantities are parts of the interface. The names must be retained. Furthermore, InResult.Samples and InResult.DataArray are inputs, and their values cannot be changed. OutResult.Samples and OutResult.DataArray are outputs, and can be changed, but not directly through their individual elements.

The default parameter function script: explanatory notes

The default parameter script is similar to the default waveform script, but there are subtle differences.

First, the size of the data array is the same as the nominal value: you cannot use or see the extra two points. So "500 points" means just that: 500 points.

Second, the output looks like an array, but only element zero is currently used. You must copy your

parameter result into newValueArray(0). As with the arrays of the Waveform Script, you cannot refer directly to elements of the input and output arrays. You may not write something like

OutResult.ValueArray (0) = P.

Note that the unit of the parameter is displayed as the same as the vertical unit of the trace, even if you have squared the data, for example, unless you change the unit yourself.

To find out how to edit a parameter script, click here.

The default parameter script is shown below.

```
' TODO add your custom code here accessing OutResult and InResult objects
' Here's a small example that just inverts the waveform
numParam = InResult.Samples
ReDim newValueArray(numParam)
scaledData = InResult.DataArray
```

```
For i = 0 To numParam-1
```

```
newValueArray(i) = -scaledData(i)_' Change this to do something useful.
Next
```

OutResult.ValueArray = newValueArray 'only support raw data

Your parameter script should include something like this:

A. Do calculation to obtain your parameter value from the input data array.

B. newValueDataArray (0) = ParameterValue

C. OutResult.ValueArray = newValueArray

You can test this script using setup MeanDemoScriptApr2.lss.

You can edit scripts using Notepad, but you will not get any notification of errors.

You are <u>not</u> allowed to write OutResult.ValueArray(0) = MeanParameter.

InResult.DataArray and OutResult.DataArray are only to be used as shown in the default scripts and in the example scripts. You cannot refer to, or modify, any individual element in these arrays.

Scripting with VBScript

Separators

The two separators in VBS are the colon : and the single quotation mark .

Using the colon, you can place two or more statements on a line, for example:

XMin = 0.0 : XMax = 800.0 : YMin = 0.0 : YMax = 600.0

There is also an implied separator whenever a new line is begun.

Using the quotation mark you can signify that the remainder of the line is a comment: non-executable material that is usually used to clarify the workings of the script. For example:

RMSMax = 32767 / Sqr (2) ' RMS of the largest sinusoid that can

be

' fitted into the screen in unscaled mode.

To continue a comment on to another line, another quotation mark is required on the new line.

Variable Types

VBS supports the following variable types:

Integer	signed 16 bit value in the range -32768 to 32767
Long	signed 32 bit value in the range -2^{31} to $+2^{31}$ - 1
Single	real number or floating point number
Double	real number or floating point number
Boolean Boolean or logical value	
String	string of characters

When making comparisons using real numbers, beware of testing for equality, because of rounding errors. It may be better to apply a tolerance band. For Boolean, integers and strings, equality is valid.

You can use variables in VBS without declaring the type. The context may force an implicit type assignment. For example, if the result of a calculation is of a different type from the defined type, the type may be changed. Always set out calculations in such a way that type changes will not affect the final result in an undesirable or unpredictable way. If you want to change the type of a variable or a result, use a conversion function that will show others what you intend to happen. The conversion functions are CDbl, CInt, CLng, CSng, CStr.

Variable Names

Upper and lower case have no significance in VBS, either in variable names or in keywords (the names reserved by the system), but it is a good idea to be consistent about the spelling of a variable name to avoid confusion. At least 36 characters may be used in a variable name. These can include any combination of alphabetic and numeric characters, and the underscore character. No other punctuation character may be used in a variable name.

Do not use any of the following characters in a variable name:

! @ & \$ # ? , * . { } () [] = + - ^ % / ~ < > : ;

Just use alphanumerics and underscore, for example: Example_Name

If you have to introduce constants, give them sensible names, just like variables. For example, do not write:

_If RMS < 23169 Then OutputY = Y

Its meaning may not be obvious to someone else.

It is better to write something like this:

274

```
FullScale = 32767
RootTwo = Sqr (2.0)
MaxRMS = FullScale / RootTwo
. . . .
If RMS < MaxRMS Then . . . .</pre>
```

But to keep your scripts fast, leave definitions like this outside your loops.

General usage

Note that white space has no effect, so you can introduce spaces for clarity, except of course within variable names, function names and other keywords. Indenting control statements can be a great help in understanding a program. For example:

If a section becomes very long, you could provide the end with a comment, to show where it comes from.

Arithmetic Operators

As with most other languages, the arithmetic operators are used as follows:

	۸	Exponentiation	$A ^ B = A ^ B = A$ raised to the power B
	1	Division	A / B = A divided by B
	١	Integer division	A \ B = A divided by B, truncated to next integer below
	*	Multiplication	A * B = A multiplied by B
Ī	+	Addition	A + B = B added to A
	-	Subtraction	A B = B subtracted from A

Operator's Manual

Notes:

If there is any possibility that you will be taking the exponent of a negative number, make sure to trap any possible errors arising from such operations as trying to take the square root of a negative number. Logs of negative numbers are forbidden also.

If there is any possibility that you will be dividing by zero, make sure to trap this.

There are two ways of dealing with these types of problem. One is to prevent it happening by making suitable tests before the calculation is performed. The other is to let it happen, and use an error handling routine. This will be discussed later.

Normally in VBScript you will know the range of the data, since all the incoming data are, by definition, integer (unscaled data) or real (scaled data), and they must fit into the screen of the instrument.

Results of Calculations

Sometimes you may see a statement like this:

A = A * A * (Cos (A) + Sin (A))

The program takes the quantity represented by A and performs all of the following operations, using that original value:

- 1. Multiply A by itself.
- 2. Calculate the cosine of A.
- 3. Calculate the sine of A.
- 4. Add the cosine and the sine together.
- 5. Multiply that result by the square of A.

At this point, the quantity represented by A has not been changed. Only at the end of the calculation is the final value placed in the memory location labeled A.

Note that you can write more than one statement on a line, separated by colons, like this

A = B * Cos (34 * Theta) * Sin (55 * Theta) : B = A * A + Z * Z

Order of Calculations

Operations are performed in the following order:

- 1. Contents of brackets.
- 2. Exponentiation.
- 3. Division and multiplication.
- 4. Addition and subtraction.

If there is any doubt as to how the calculation will be done, use brackets. These will also make the order of the calculations clear to any reader of the program, which is desirable if you are to give it to a customer, who will want to know what was intended.

Here are some examples of the uses of brackets:

Brackets are worked out before any other operations are performed.

Use brackets to force the result you want, and also to clarify a calculation.

```
A 11111111 255 01011010 90
                                   (B OR C) AND (D OR E)
B 11110000 240 00000000 0
                                   B OR (C AND D) OR E
C 10101010 130 11111010 250 B OR (C AND (D OR E))
D 01010101 85 01011111 95
                                   ((B OR C) AND D) OR E)
E 00001111 15
F 00000000 0
            A 7
                              315 A * B * (C / D) * E * F
            B 6
                              8.75 A * B * C / (D * E * F)
            C 5
                              35 A * B * (C / (D * E)) * F
            D 4
            E 3
            F 2
```

Check these results to see whether any errors, deliberate or otherwise, have been introduced.

These results are from file Brackets.Xls. You can make a copy of that file in order to experiment with different combinations of brackets.

VBS Controls

Do Do Do Loop Until Loop While Loop Do Until Do While Exit Do Loop Loop For . . . Next Exit For GoTo___This is not allowed in instrument VBS. If Then _' On one line___ If . . . Then ElseIf . . . Then

Operator's Manual

```
End If
If . . . Then . . . End If__
If . . . Then . . . Else . . . End If
Select Case
. . .
End Select
While
. . . .
Wend
```

Choose the construction that best satisfies the requirements of speed and clarity.

The construction GoTo LabelledStatement is available in many languages, including VBA, but not in VBS. *GOTO* is not allowed in VBS.

IF . . . Then . . . Else . . . End If

A very simple example:

```
If A \ge 0 Then B = Sqr(A) 'Take the square root of A if A is not negative.
If A + B < C + D Then E = F : G = H 'No End Is needed if all on one
```

line.

If you need to perform a longer procedure, make this construction:

```
If A >= 0 Then
B = Sqr (A)
C = 32766 * Sin ( TwoPi * B / PeriodOfSinusoid)
End If ' End If is needed to terminate the construction.
```

The If statement is very often used with the following Boolean expressions:

A > B	A is greater than B		
A >= B	A is greater than B or equal to B		
A = B	A is equal to B		
A < B	A < B A is less than B		
A <= B A is less than B or equal to B			
A <> B	A is not equal to B		

These statements are not like the usual program statements, such as A = B. These statements are Boolean (logic) statements, which can take the values True or False. You may even see things like "If A Then B", which means that if A is True, B gets done.

In the first example, if A is negative, we might want to write something like this:

278

If $A \ge 0$ Then B = Sqr (A) Else B = 0 End If

and in fact you can make some very complex constructions using If, as in the examples below:

```
If A < 0 Then
         If A < -1 Then
         Z = 17
         Else_
         Z = 31
         End If
     Else_
         If A > 3 Then
         Z = 63
         Else
         Z = 127
         End If
     End If
     If A > 0 Then
         If B > 0 Then
         Z = Y
         End If
     End If
This is equivalent to:
     If ( (A > 0) And (B > 0) ) Then
     Z = Y
```

End If

Summary of If Then Else

If Boolean Then AnyVBScriptingOnOneLine

```
If Boolean Then
AnyVBScriping
End If
If Boolean Then
AnyVBScripting
Else
AnyOtherVBScripting
End If
```

If you write a list like this, all the Booleans will be evaluated, whether you want that or not:

If A > 9 Then VBScripting1
If A > 7 Then VBScripting2
If A > 6 Then VBScripting3
If A > 4 Then VBScripting4
If A > 3 Then VBScripting5
If A > 1 Then VBScripting6

Be very careful when testing for equality. There will be no trouble with Integers, Long Integers, and Strings, but Real numbers are different. Because they have so many significant digits, values that should be equal, may differ minutely after a computation. It is safer with Real numbers to test using a tolerance band.

File for this example: IfThenElse.xls

If you find that you are building up a rather complicated set of Ifs, you might want to consider the Select Case construction.

Select Case

This is a very powerful construction, which is also easy to understand when written out. It is best for Integers and Strings, where exact values are always obtained. Here is a simple example:

```
Select Case K
    Case 7 : Y = 6 : Z = 3
    Case 7 : Y = Sqr (Sin (A) ) : Z = Sqr (Cos (A) )
    Case N : Z = Y + X
    Case Else :
End Select
```

Case N assumes that the value of N has already been set. Case Else is included to cover other

cases, whether foreseen or not. It should always be included.

You can also provide lists of values.

```
Select Case K
Case 1, 2, 3, 5, 8, 13 : Y = 55 : Z = 89
Case 4, 9, 16, 25, 36 : Y = Sqr (Sin (A) ) : Z = Sqr (Cos (A) )
Case 7, 15, 31, 63, 127 : Z = Y + X
Case Else : Z = 3
End Select
```

Case N assumes that the value of N has already been set. Case Else is included to cover other cases, whether foreseen or not. It should always be included.

This is very much neater than a string of Ifs and Elses, but remember: you cannot use Select Case unless you are sure of exact equality, which allows you to compare integers and strings only. You cannot put Case > 5, for example. File for this example: SelectCase.Xls

Summary of Select Case End Select

```
SelectCase VariableName
Case Alist : VBScriptingA
Case Blist : VBScriptingB
....
Case Else : VBScriptingElse_ VBScriptingElse can be empty.
End Select
```

Do . . . Loop

This construction is useful when you do not know at programming time how many times the loop will be executed. Here are some examples:

Do AnyVBSCalculation Loop Until D > Pi Do Until Z < Y AnyVBSCalculation Loop Do AnyVBSCalculation

Operator's Manual

```
Loop While D <= Pi
Do While Y >=Z
AnyVBSCalculation
```

Loop

These constructions enable you to make the test before or after the calculation. If before, the calculation might not be done even one time, if the condition for terminating were already true. With the condition at the end, the calculation is done at least one time.

Sometimes you might want to exit the loop from somewhere inside: for example, if some kind of problem is looming, such as the logarithm of a negative number.

For this case, you can use **If Then Exit Do**.

To make a pause of 10 seconds you can write:

NewTime = Timer + 10.0

Do Loop Until Timer >= NewTime

where Timer is a clock function in the PC, which has a resolution of one second.

Example file for these constructions: DoLoops.XIs

While . . . Wend

This is similar to Do While . . . Loop. You can write things like:

```
While ( (A > 2) And (C < 92677663) )
AnyVBCalculation
Wend
```

For . . . Next

Sometimes you know, or you think you know, the number of times that you want to do a job. For this case a For loop is ideal, especially when you have an array of numbers to work with.

Examples:

```
For K = 0 To Total
HistogramBin (K) = 0
Next
Omega = TwoPi / Period
For N = 0 To Period
Y (N) = A * Sin (Omega * N)
Next
```

Be careful about changing the counting variable in any loop. You can do this to terminate the loop

282

early (but Exit For is better), but you could also prevent it from terminating at all.

For emergency exit, you can use **Exit For**. For example:

It is possible to make a For loop with steps greater than 1, as in the following example in which K takes the values 3, 7, 11, 15, 83.

```
For K = 3 To 82 Step 4
AnyVBScripting
Next K
```

You may place loops inside one another (nested loops), but they must all use different control variables. Example:

```
For K = 0 To N
VBScriptingK
For L = - 7 To 17
VBScriptingL
For M = S To T
VBScriptingM
Next
```

Next

VBS keywords and functions

The ones in *italics* do not apply to the instrument.

+	Add two values or concatenate two strings.
	Subtract two values.
*	Multiply two values.
/	Divide two values.
\	Divide two values to obtain an integer result
Abs	Make absolute value.
Asc	Make ASCII value of a character.
Atn	Make tan ⁻¹ of a value. Result in range from $-\pi/2$
	to $+\pi$ /2 radians.

Cdbl	Convert a value to double precision floating
	point.
Chr	Create a character from an integer in range 0 to 255.
Cint	Convert a value to nearest integer in the range -32768 to +32767
Cing	Convert a value to nearest long integer in the range -2^{31} to $+2^{31}$ - 1.
Close	Close a file.
Cos	Make the cosine of an angle expressed in radians.
Csng	Convert a number to single precision floating point.
Cstr	Convert a variable to a string.
Ехр	Raise e to the power of the input.
Get	Get a value from a file.
Input	Get some ASCII data from a file.
Instr	Find the position of a string in a longer string.
Int	Convert to nearest integer below the input value.
Left	Take some characters at the left end of a string.
Log	Take the natural logarithm of a positive value.
Ltrim	Remove spaces at the left end of a string.
Mid	Take or insert some characters in a string.
Mod	Take the modulus of a value in terms of another value.
On Error	Take some action if an error occurs.
Open	Open a file.
Print	Send some ASCII data to a file.
Put	Send some data to a file.
Randomize	Randomize Timer re-seeds the pseudo-random number generator.
Read	Read from a file.

284

Right	Take some characters at the right end of a string.
Rnd	Make a random real number in the range from 0.0 to 1.0
Rtrim	Remove spaces from right hand end of a string.
Sin	Make the sine of an angle expressed in radians.
Sqr	Make the square root of a positive number.
Str	Make a string from a numerical value.
Timer	Time since midnight in seconds, with a resolution of one second.
Trim	Remove leading and trailing spaces from a string.
Val	Get the ASCII value of a string beginning with numerical characters.

Other VBS Words

Const	Define a constant value.
Dim	Dimension a variable.
Redim	Dimension a variable again.
Boolean	Boolean variable
Double	Double precision real variable.
Integer	Integer in the range -32768 to + 32767
Long	Long integer in the range -2^{31} to $+2^{31}$ - 1
Single	Single precision real variable
String	String variable
And	Logical AND
Or	Logical OR

To make a bit-by-bit comparison, logical constructions can be used with variables, as in A and B, or with tests such as If A > B Then . . .

Functions

These are mainly of the form C = F(A), where A is the argument, or input to the function.

Abs	Abs (A) calculates the absolute value of an integer or a real number, so the result is always
-----	---

Operator's Manual

	positive or zero. A can be any number in the
	range of the VB system.
Atn	Atn (A) calculates the angle of which A is the tangent. Because infinitely many angles can have the same tangent, the output of Atn always lies in the range minus π / 2 to plus π / 2. The input can be any positive or negative value in the range of the VB system.
СДРІ	CDbl (A) calculates a double precision real variable, equal to A.
CInt	Cint (A) calculates the integer value nearest to A, which can be any acceptable VBS number. Cint $(-7.4) = -7$. Integers are signed 16-bit values in the range -32767 to + 32767.
CLng	CLng (A) calculates the nearest long integer to the value A. Long integers are signed 32-bit values in the approximate range -21.5 M to + 21.5 M.
Cos	Cos (A) calculates the cosine of any integer or real number, giving an output that is never greater than plus one or less than minus one.
CSng	CSng (A) calculates a single precision real variable equal to A.
Ехр	Exp (A) calculates the value of e ^A .
Int	Cint (A) calculates the integer value next below A, which can be any acceptable VBS number. Int $(-7.4) = -8$.
Log	Log (A) calculates the natural logarithm (to base e), of any acceptable VBS number greater than zero. A negative number or zero will create an error.
	To calculate Log ₁₀ (A), use Log ₁₀ (A) = Log(A) / Log(10)
Mod	A Mod (B) calculates the modulus of A, which is the remainder after A has been divided by B.
	34 Mod 8 = 2. 34 Mod 55 = 034 Mod 13 = -8. 21 Mod -8 = 5.
Randomize	Calculates a new seed for the pseudo-random

	number generator.
	Randomize Timer uses the real-time clock for this purpose.
Sin	Sin (A) calculates the sine of any integer or real number, giving an output that is never greater than +1 or less than -1.
Sqr	Sqr (A) calculates the square root of any integer or a real number that is not negative. If A is negative, an error will occur.
Timer	Time since the previous midnight in whole seconds.

Hints and Tips for VBScripting

Set the trigger to Single or Stopped if you need to do a lot of editing: it is faster.

Before starting a script, remove any existing scripts that you do not need. This is because errors in an existing script will give you error messages, even if your current script is perfect. And an existing good script may develop a fault if you change the setup. For example, you might change the vertical scale or the memory length and get an overflow if you did not guard against it in the script.

When starting a script, make sure that you have chosen the right kind: function or parameter. You can get some very frustrating problems if you are in the wrong mode. You can cut and paste the VBS statements if you discover this error.

If your calculation requires a long memory, development might be quicker if you test the principles on a shorter trace at first.

Note that the pseudo-random number generator is reset at the start of a script. If you want a different set of pseudo-randoms every time, put Randomize Timer in the program, to be run once, before any pseudo-randoms are generated. You can use this instruction to re-seed the generator at any time during execution.

Do not put the final statement in a loop, hoping that you can see a progressive result as some parameter changes. No output will be seen on the screen of the instrument until the script has been completely run and quitted, so only the final result will appear. If the loop runs many times, you will think that the scope has hung up.

If you want a For loop, end it with "Next" and not "Next X".

If you make a script that takes a long time to run, go back to the default setup before quitting or powering down, or you will have a long wait next time you power up.

Always use a recursive calculation when this will speed things up.

Keep everything outside a loop that does not have to be inside, to speed things up.

Make your scripts clear, not only by indenting and commenting, but by structuring neatly as well.

Sometimes it might be easier to develop your script in Excel VBA (remembering that VBA is not

identical to VBS), so that you can display intermediate results. If you do this, note that you can read from a cell or write to it using statements like these:

```
A = Worksheets("Sheet1").Cells(Row, Column).Value
Worksheets("Sheet1").Cells(Row, Column).Value = B
```

Note that in VBS, after you have corrected an error and clicked on "Apply," the error message may go on flashing for a few seconds, or a few acquisitions, before being erased. Look for the "Script OK" message. Be patient before assuming that you still have a bug.

If your calculation requires data to be used at some other horizontal positions than their original ones, make sure that your algorithm does not try to send data to non-existent array positions, that is, beyond the edges of the screen. You may have to truncate your output trace, as happens with the instrument's Enhanced Resolution and Boxcar functions.

No output will emerge from a script until you press Apply.

No output will emerge from a script until it has received an input. This includes the case where the input data are not used in calculating the output data. So you must have had at least one acquisition before you see anything.

Because you can introduce undeclared variables at any point in a calculation, VBS does not check your spelling.

You can make a portion of a trace disappear if you set the values to 32767 or -32768.

You can highlight a section of a trace by making the points alternately too high and too low by a suitable amount. Providing the memory length is not too short, the compaction algorithm will give the effect of a thicker trace.

The lengths of the output trace and the input trace need not be the same. You can even make the output trace longer than the input trace, but you will need to unzoom it to see it all. This feature can be used to avoid compaction problems with non-linear horizontal scales. It can also be used to show several versions of a function at the same time, without having to set up a separate script for each one.

If your program structure is complicated, consider typing all the IFs, ELSEIFs, ENDIFs, FORs, NEXTs, etc and then clicking Apply. You wont get any output, but the system will tell you if the structure is acceptable. Then you can insert the actual program statements.

Always try to make the script as independent as possible of variables such as V/Div, T/Div, and memory length, unless that would make it harder to understand. If so, give some values as examples, and explain how the script would have to change if the variables changed.

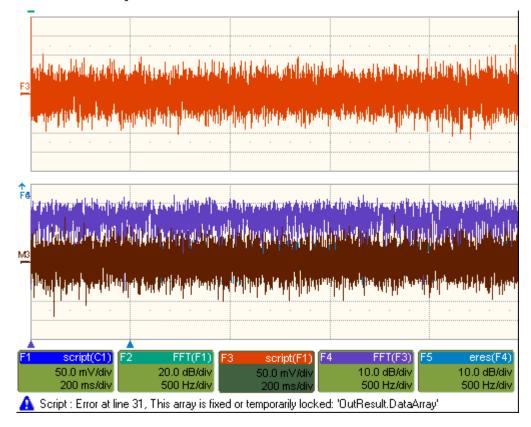
ERRORS

The instrument VBS tries hard to help you when errors occur.

Errors may be of two main types:

- The script may not be usable because the interpreter cannot construct a logical structure from it.
- The script may be usable, but may fail while running because an incomputable function has

been requested.


Sometimes the line number given for an error is wrong. This can happen when the error is of this general type:

Missing "Next" Missing "End If" Extra "Next" Missing "Until" etc.

This happens because VBS cannot know where you should have put the statement.

If at some point during the calculation of an output array, a value goes outside the allowed range, the calculation will stop, and you will see the new values up to the point of the stoppage. To the right of that point, the trace will display the previous values. In fact, if you deliberately recalculate only a part of a trace, you can have a mixture of new and old values.

In the figure below is a type of error message that you may see if one of your calculations has tried to set a value outside the range -32768 to +32767. It takes extra time to guard against this, but unless you are sure that it will not happen, you need some kind of check. In the example on the next page, the red trace has gone outside the allowed range at the beginning, resulting in the message at the bottom of the instrument screen: This array is fixed or temporarily locked: OutResult.DataArray.

Error Handling

Note that the construction OnError GoTo Label: is not allowed in VBS. In fact no GoTos or labels are allowed. Therefore there is no way for you to provide handlers to deal with errors and exceptions. You must be aware of all possibilities at all points in your program, and you must either be certain that errors will not occur, or you must take action to ensure that they do not.

Examples:

Sqr	You cannot take the square root of a negative number.	
Log	You cannot take the log of zero or of a negative number.	
А/В	You cannot divide by zero. You cannot use an index outside the bounds of an array.	
Array		
Size	Unscaled data cannot go outside the range -32768 to 32767.	

If there is any possibility that any of these might occur, take steps to deal with this before it can happen.

For example, you may write some kind of generator of pseudo-random statistical values. If these belong to a distribution that in principle has an infinite range, or a finite range which is wider than the signed 16-bits allowed, check each value. If a value falls outside the range, you could set it to the maximum or generate another example.

You can, however, use one of the following:

On Error Resume Next

followed by some code that may make some attempt to deal with the problem, or at least to allow execution to continue.

On Error GoTo 0

This cancels On Error Resume Next_

Speed of Execution

To maximize the speed of execution of a script, the most important thing you can do is to minimize the number of operations that are performed inside loops. Anything done once only is unlikely to be an important source of delay. Please note that VBS is much slower than the internal computations of the instrument, so do everything you can to save time, unless time is irrelevant to the application.

Using an array element takes longer than using a single variable. Here is an example:

For K = 1 to Total If X (K) > X (K - 1) Then

WE-OM-E Rev A

290

```
Y = Cos (X (K)) * Sin (X (K)) * Sqr (X (K))
End If
```

Next

To do the same thing we could also write this, using the index only once:

```
OldXK = X (0)
For K = 1 To Total
XK = X (K)
If XK > OldXK Then
Y = Cos (XK) * Sin (XK) * Sqr (XK)
OldXK = XK
End If
Next
```

VBS runs slower than the "internal" calculations, because the scripts are interpreted. This could be serious for calculations where many operations are needed on each sample, such as convolution, correlation, and long digital filters.

Scripting Ideas

What can we do in a VBS script that we cannot do with the normal instrument functions? Here are some possibilities.

- Create a new function that acts on waveform values.
- Create a new parameter.
- Create a new form of non-linear vertical scale.
- Create a new form of non-linear horizontal scale.
- Move some or all data horizontally, including reflections.
- Combine data to form digital filters.
- Show several function results side by side.
- Show several function results interleaved.

You can even create output data that are not related to the input. The output data need not even be in the same domain as the input data, because the system treats them as pure numbers. So you can create your own transforms into the frequency domain, for example.

Debugging Scripts

Until we have integrated a more comprehensive debugger for VBScript there is a workaround.

1. Download the Windows Scripting Debugger for Windows 2000 from here:

http://download.microsoft.com/download/winscript56/Install/1.0a/NT45XP/EN-US/scd10e n.exe

2. Enable JIT (Just In Time) debugging by setting the following registry key

HKCU\Software\Microsoft\Windows Script\Settings\JITDebug = to 1 (DWORD value)

3. Place a **Stop** statement in your script.

Now, when the Stop statement is executed the debugger will open and allow single-stepping, variable examination, etc.

Using VBA or Visual Basic to debug VBScripts is not recommended since the language syntax for these three variants of basic is slightly different.

InResult.HorizontalOffset Double precision Time shift of input waveform on grid in units of horizontal scale OutResult.HorizontalOffset Double precision Time shift of output waveform on grid in units of horizontal scale Time between successive InResult.HorizontalPerStep Double precision samples in the input waveform Double precision Time between successive OutResult.HorizontalPerStep samples in the output waveform InResult.HorizontalUnits String Horizontal units of input waveform Horizontal units of output OutResult.HorizontalUnits String waveform Number of samples in input InResult.Samples Integer waveform

Horizontal Control Variables

Vertical Control Variables

InResult.VerticalOffset	Double precision	Vertical shift of input waveform on grid
OutResult.VerticalOffset	Double precision	Vertical shift of output waveform on grid
InResult.VerticalPerStep	Double precision	Difference between successive possible levels in the input waveform memory
OutResultVerticalPerStep	Double precision	Difference between successive possible levels in the output waveform memory
		1 / 65536 of vertical full scale

InResult.VerticalResolution	Double precision	Difference between successive possible physical levels in the input waveform
OutResultVerticalResolution	Double precision	Difference between successive possible physical levels in the output waveform
		1 / 256 of vertical full scale for channel waveforms
		1 / 65536 of vertical full scale for math waveforms
InResult.VerticalUnits	String	Vertical units of input waveform
OutResult.VerticalUnits	String	Vertical units of output waveform

WE-OM-E Rev A

List of Variables Available to Scripts

FirstEventTime([out, retval] VARIANT * pVal); FirstEventTime([in] VARIANT newVal); LastEventTime([out, retval] VARIANT * pVal); LastEventTime([in] VARIANT newVal); UpdateTime([out, retval] VARIANT * pVal); UpdateTime([in] VARIANT newVal); Details([in] BSTR strDetailsIID, [out, retval] VARIANT * pVal); Status([out, retval] VARIANT * pVal); Status([in] VARIANT newVal); ExtendedStatus([out, retval] VARIANT * pVal); ExtendedStatus([in] VARIANT newVal); StatusDescription([out, retval] BSTR * pVal); StatusDescription([in] BSTR newVal); DataArray([in, defaultvalue(TRUE)] BOOL arrayValuesScaled, [in, defaultvalue(LEC_ALL_DATA)] int numSamples,

- [in, defaultvalue(0)] int startIndex,
- [in, defaultvalue(1)] int sparsingFactor,
- [out, retval] VARIANT *pArray);

DataArray([in, defaultvalue(TRUE)] BOOL arrayValuesScaled,

- [in, defaultvalue(LEC_ALL_DATA)] int numSamples,
- [in, defaultvalue(0)] int startIndex,
- [in, defaultvalue(1)] int sparsingFactor,
- [in] VARIANT array);

HorizontalUnits([out, retval] BSTR *pVal); HorizontalUnits([in] BSTR newVal);

Samples([out, retval] int *pVal); Samples([in] int newVal);

HorizontalResolution([out, retval] double *pVal); HorizontalResolution([in] double newVal);

HorizontalPerStep([out, retval] double *pVal); HorizontalPerStep([in] double newVal);

HorizontalOffset([out, retval] double *pVal); HorizontalOffset([in] double newVal);

Sweeps([out, retval] int *pVal); Sweeps([in] int newVal);

HorizontalVariances([out, retval] int *pVal); HorizontalVariances([in] int newVal);

HorizontalVarianceArray([out, retval] VARIANT * pArray);

HorizontalVarianceArray([in] VARIANT array);

HorizontalFrameStart([out, retval] double *pVal); HorizontalFrameStart([in] double newVal);

HorizontalFrameStop([out, retval] double *pVal); HorizontalFrameStop([in] double newVal);

VerticalFrameStart([out, retval] double *pVal); VerticalFrameStart([in] double newVal);

VerticalFrameStop([out, retval] double *pVal); VerticalFrameStop([in] double newVal);

VerticalResolution([out, retval] double *pVal); VerticalResolution([in] double newVal);

VerticalPerStep([out, retval] double *pVal); VerticalPerStep([in] double newVal);

VerticalOffset([out, retval] double *pVal); VerticalOffset([in] double newVal);

VerticalMinPossible([out, retval] double *pVal); VerticalMinPossible([in] double newVal);

VerticalMaxPossible([out, retval] double *pVal); VerticalMaxPossible([in] double newVal);

VerticalUnits([out, retval] BSTR *pVal); VerticalUnits([in] BSTR newVal);

Communicating with Other Programs from a VBScript

The ability of The instrument to communicate with other programs opens up immense possibilities, both for calculation and for graphics, making the assembly of reports relatively simple.

Communicating with Excel from a VBScript

Although there are direct instrument calls to Excel and other programs, you may wish to do this from a VBScript. Here is an example:

```
OutResult.Samples = InResult.Samples
startData = 0
endData = OutResult.Samples
ReDim newData(OutResult.Samples)
USD = InResult.DataArray(False)
LastPoint = endData - 1
Set ExcelApp = GetObject(,"Excel.Application")
ExcelApp.Visible = True
ExcelColumnA = 2
                      'Column where the data will appear in Excel
ExcelRow = 10
                      'Row where the data will start
ExcelColumnB = 3
                      ' Column where the output data will appear in Excel
     For K = 0 To LastPoint
     ExcelApp.ActiveSheet.Cells("ExcelRow + K, ExcelColumnA ") = -USD(K)
     Next
Once the data are in Excel, any Excel functions can be applied to the data.
The results can be returned to the VB script.
     For K = 0 To LastPoint
     NDA(K) = ExcelApp.ActiveSheet.Cells("ExcelRow + K, ExcelColumnB")
     Next
```

Transferring data cell by cell is very slow, so it is better to do a block transfer.

Calling MATLAB from The Instrument

Note: Load MATLAB version 6.5 just as you would on any PC. Once it is loaded, open MATLAB from the desktop, then close it again, before you attempt to open it from the instrument application. This is to update the registry.

MATLAB can be directly called from the instrument in two ways:

	F1 through Fx [The number of math traces available depends on the software options loaded on your scope. See Specifications.]	MATLAB returns a waveform
Using a parameter	P1 through Px	MATLAB returns a parameter

In both cases, one call to MATLAB can use two separate waveforms as input, providing much greater computing power than is available by calling MATLAB from a VBScript.

Note: If you do not place a semicolon ";" at the end of a line, MATLAB will show the calculated value in the result window, significantly slowing down the processing rate. This feature is best kept for diagnostics.

How to Select a Waveform Function Call

The MATLAB Waveform functions are selected from the **Select Math Operator** menu. Please note that once you have clicked on "MATLAB Wave" there will be a slight pause before MATLAB starts.

Select Math Operator						
Category	Choices					
AII	Name	Description				
Functions	FFT	Fast Fourier Transform of waveform data				
Basic Math	Floor	Lowest Y value at each X in N sweeps				
Custom	Histogram	Histogram of the values of a parameter				
	∫ydx ^{∠I} ntegral	Integral of the linearly rescaled (multiplier and adder) input				
Filter	-(y) Invert	Inversion (negation) of input waveform				
Frequency Analysis	[n(y) ^{Ln} 3	Natural log of input waveform values				
	log(y) Log10	Log base 10 of waveform				
Functions	MarricadMath	Produces a waveform using a user specified Mathcad function				
Graphing	MATLAB math	Produces a waveform using a user specified MATLAB				
Jitter 🖵		Cancel				
Source1	TLAB math					
Source2 C2		-Summary MATLAB(C1,C2)				

Source 1 and Source 2 are the waveforms that MATLAB will use.

The MATLAB Waveform Control Panel

Once you have invoked a MATLAB waveform call, you will see the zoom dialog at the right of the screen. Touch the MATLAB tab to see a panel like this:

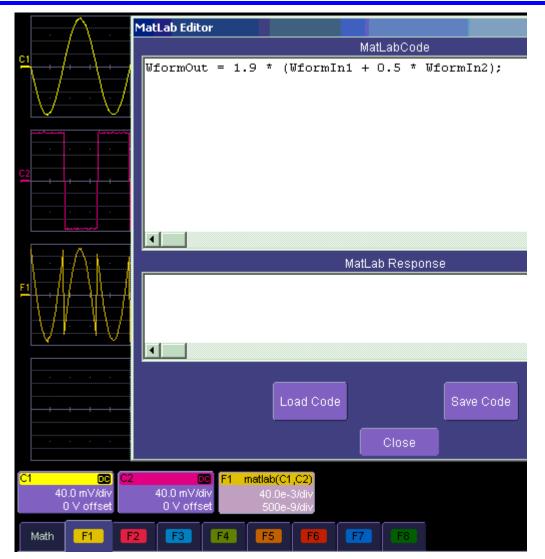
Dialog					×
	Pr	ocess waveform	n(s) with Mat	Lab	
	Edit Code	MatLabf	Plot		
		Zero O	ffset	Scale/div	
Find Scale		<u>0e-9</u>		50.000000e-3	
		Clo	se		

Touch **Find Scale** to make your output fit the grid, or use the text boxes to choose a scale.

MATLAB Waveform Function Editor -- Example

By touching **Edit Code**, you can reach the MATLAB Editor where you will see the default waveform function. If you are familiar with MATLAB, you might prefer to launch MATLAB and create a MATLAB function that performs your task. Your program in the instrument could then be a one-line call of your MATLAB function.

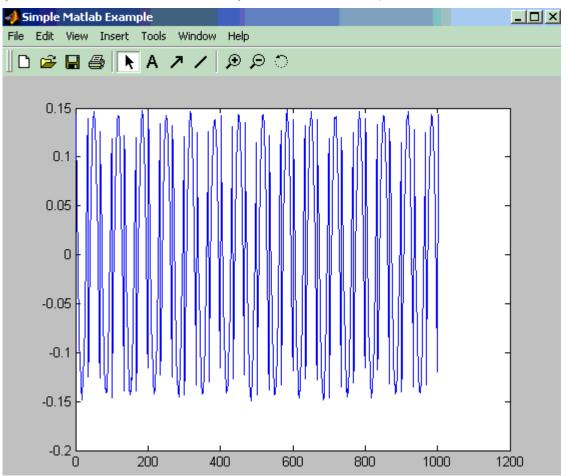
Wave Expert


	MatLab Editor
	MatLabCode
F3	WformOut = -0.5 * WformIn1
	•
	MatLab Response
	VformOut =
	0
	-0.0009 -0.0018
	Load Code Save Code
	Close
F3 script(C3) 50.0 mV/div 50.0 ns/div	Mab(F3,C2) 50.0e-3/div 50.0e-8/div
Moth F1: F2	F3 F4 F5 F6 F7 F8

This is the default waveform function, with one important change – the semi-colon (;) has been removed from the end of the line. If the semicolon is present, your function will run much faster, because the output values will not be shown in MATLAB Response. With a long waveform, the time needed to display it could be quite long. The response values can be useful during development and debugging. Any line without a semicolon will produce a visible MATLAB Response.

From this panel you can save your code, load a previous code, and edit your function. A powerful feature of MATLAB is that you can refer to an entire waveform as a vector. The two input waveforms are WformIn1 and WformIn2, while the output is WformOut. You can also refer to individual samples, such as WformIn1(34), and sequences of samples, such as WformIn(55:89)

You can write statements such as these:


WformOut(5) = WformIn(5)
WformOut(89) = WformIn(144)
WformOut(34:55) = WformIn(34:55)
WformOut(233:377) = WformIn(100:244)

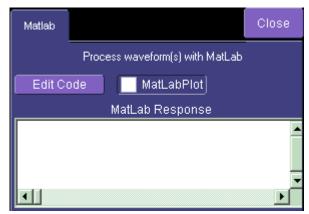
This very simple example adds a rescaled copy of Channel 2 to a copy of Channel 1, and then rescales the result.

MATLAB Example Waveform Plot

If you touch the MATLAB Plot checkbox you will see a MATLAB plot like this one:

WE-OM-E Rev A

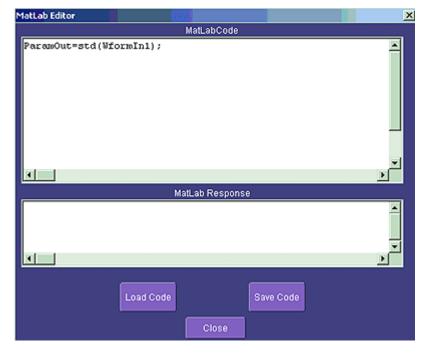
301


Select Measurement						
Category	Choices					
AII	Name	Description 🦲				
Measure	Local tbe	Time between events (between local peak and next trough or local trough and next peak)				
Custom	Local tbp	Time between a local feature peak and the next local peak				
Disk	Local tbt	Time between a local feature trough and the next local trough				
Local	<mark>∕~</mark> 2	Time a local feature spends over a user specified percentage of its peak to trough amplitude				
Disk Standard	Local tpt	Time between local feature peak and trough				
Horizontal	Local ttp	Time between local feature trough and the next local peak				
Jitter	MathcadPare	al feature spends under a user specified e of its peak to trough amplitude a parameter using a user specified Mathcad				
Misc	0.000	function Im Produces a ng a user specified MATLAB function				
Pulse 💌		Cancel				
Source1	Operator1 MATLAB math					
Source2 C2		Summary MATLAB(C1,C2)				

How to Select a MATLAB Parameter Call

Menu position for MATLAB parameter call in **Select Measurement** menu.

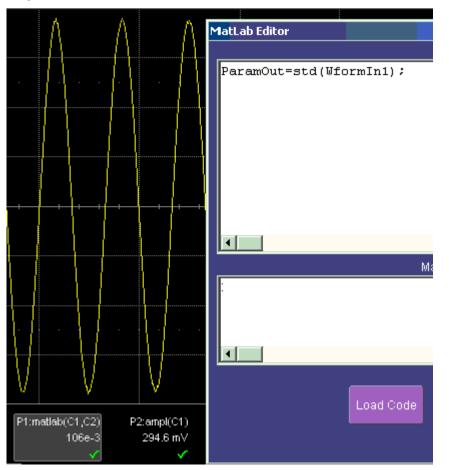
The MATLAB Parameter Control Panel


Once you have invoked a MATLAB parameter call, a mini-dialog to the right of the main dialog will appear:

You can touch the **MATLAB Plot** checkbox if you want to see a plot in MATLAB as well as getting a result in the instrument.

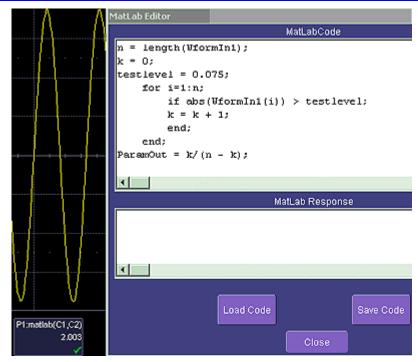
The MATLAB Parameter Editor

By touching Edit Code, you can reach the MATLAB Editor:

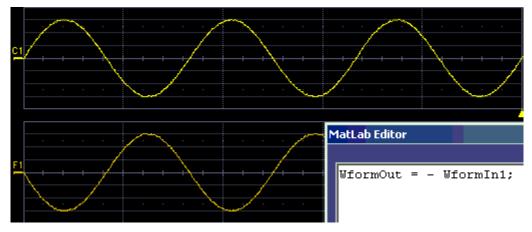


This simple example shows the MATLAB function Standard Deviation acting on input channel 1, and the result would be shown in the **MATLAB Response** pane for an amplitude of 0.15 volt.

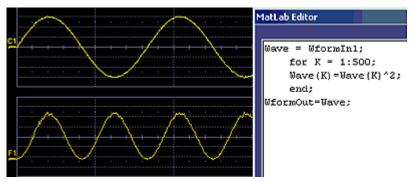
You can load an existing MATLAB program, using the **Load Code** button, and you can save the current program, using the **Save Code** button.


If you are familiar with MATLAB you might prefer to launch MATLAB and create a MATLAB function that performs your task. Your program in the instrument could then be a one-line call of your MATLAB function.

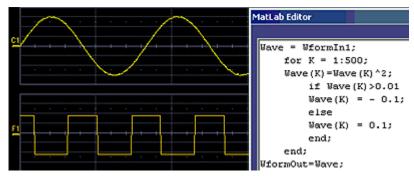
MATLAB Example Parameter Panel

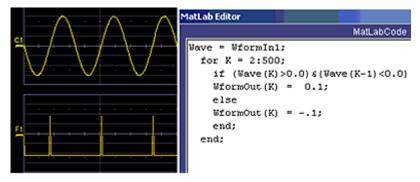

The next example calculates the ratio of the number of data points that are above a given level to the number of points below the level, in this case one half of the amplitude.

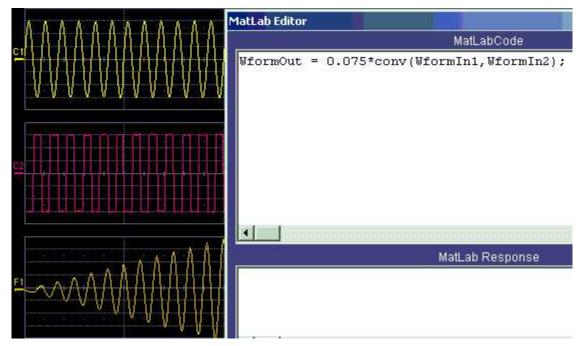
Wave Expert



Further Examples of MATLAB Waveform Functions


Negate the input signal:

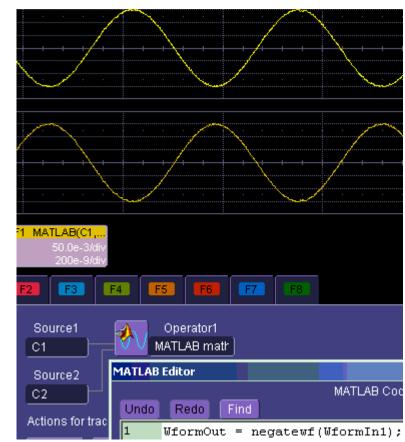

Square the input signal:



Create pulses from a sinusoid.

Create pulses at the zero crossings of the signal.

Convolve two signals.


Creating Your Own MATLAB Function

The procedure is simple. Create a MATLAB function using any text editor, and save it as a MATLAB m-file by giving it a name of the form Filename.m. Call the function using the MATLAB math editor or the MATLAB parameter editor as appropriate. A simple example is shown below.

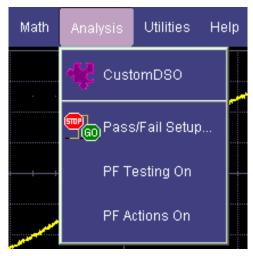
```
function out = negatewf(wf1)
```

% NEGATEWF changes the sign of all the data.

out = -wf1;

CUSTOMDSO

Custom DSO


Introduction - What is CustomDSO?

CustomDSO, in its Basic mode, allows you to create DSO setups that can be called by the touch of a single button. The recalled setups can themselves include calls to other setups. A very simple example would be a toggle between two setups. Rings of three or more setups are possible, as are trees, or any other topology that you need. Basic mode also allows you to recall VBScripts that can set up all or part of the scope and do many other things.

Another more powerful feature is the PlugIn, which allows you to add your own ActiveX controls to a setup. These controls are powered by routines written in Visual Basic. With ActiveX controls you can create your own user interfaces to suit your own preferences. A large number of interactive devices are available: button, checkbox, radio button, list box, picture box, and common dialogue box.

Invoking CustomDSO

CustomDSO can be invoked from the Analysis drop-down menu:

If CustomDSO is already in Basic mode, the following dialog will be displayed:

Mode	Select	Action	Action Definition
Off	1	2	Setup file to recall when action pressed
	3	4	c:\LeCroy\XStream\CustomDSO\custom 4.lss
Basic	5	6	
Plugin	7	8	

CustomDSO Basic Mode

The **Basic** CustomDSO mode offers eight Action buttons, each of which can call a different setup when touched. The "Action Definition" dialog is used to enter a CustomDSO setup file name by means of the pop-up keyboard.

Checking the **Execute scripts asynchronously** checkbox allows scripts to run in a separate process. Thus, the scope application can perform another function while the script is being executed.

Execute scripts asynchronously

Present CustomDSO menu at powerup and when menu closed.

By clicking the checkbox buttons will continue to be available at the bottom of the screen after you close the CustomDSO dialog. Furthermore, they will appear automatically each time the scope is powered up.

Editing a CustomDSO Setup File

Edit

If the file does not exist, touch the **Edit** button **Edit** button enables you to modify it. The **Edit** button allows you to edit the file that is named in the **Setup file to recall** field, and not the file of the setup that the instrument is currently in, unless these happen to be the same.

In the example used here, three setup files were made, called CustomA.lss, CustomB.lss and CustomC.lss. Fragments from all three are shown below.

```
1160 Set CustomDSO = XStreamDSO.CustomDSO
1161 ' CustomDSO Setup A.lss
1162 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1163 CustomDSO.ActionEnable1 = False
1164 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\B.lss"
1165 CustomDSO.ActionEnable1 = True
1166 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\C.lss"
1167 CustomDSO.ActionEnable1 = True
1168 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1169 CustomDSO.ActionEnable1 = False
1160 Set CustomDSO = XStreamDSO.CustomDSO
1161 ' CustomDSO Setup B.lss
1162 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1163 CustomDSO.ActionEnable1 = True
1164 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\B.lss"
1165 CustomDSO.ActionEnable1 = False
1166 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\C.lss"
1167 CustomDSO.ActionEnable1 = True
1168 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1169 CustomDSO.ActionEnable1 = False
1160 Set CustomDSO = XStreamDSO.CustomDSO
1161 ' CustomDSO Setup C.lss
1162 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1163 CustomDSO.ActionEnable1 = True
1164 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\B.lss"
1165 CustomDSO.ActionEnable1 = True
1166 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\C.lss"
1167 CustomDSO.ActionEnable1 = False
1168 CustomDSO.ActionScript1 = "c:\LeCroy\XStream\CustomDSO\A.lss"
1169 CustomDSO.ActionEnable1 = False
```

The text in green following a single quotation mark is a VBS comment and causes no action.

The text in red contains the path and name of the setup file associated with the numbered button. This setup will be called when the button is pressed.

The Boolean (in blue) decides whether the action button will invoke the setup or remain inactive.

For example, in setup B, A.Iss and C.Iss can be invoked, but not B, which is already in place.

As you see from the line numbers in the program fragments, the setup files are rather long because they include all the information needed to set the scope to the required state. But if you want to make a very short file that changes only a few variables (for example, the action button settings) you can make a file that includes only the relevant instructions. This usage assumes that the remainder of the scope is already in the required state. This is an example of the complete compatibility of the instrument's software. The same commands can be used in setups, in scripts, or in remote control commands in external programs, whether resident in the instrument or in an external computer.

Creating a CustomDSO Setup File

Edit

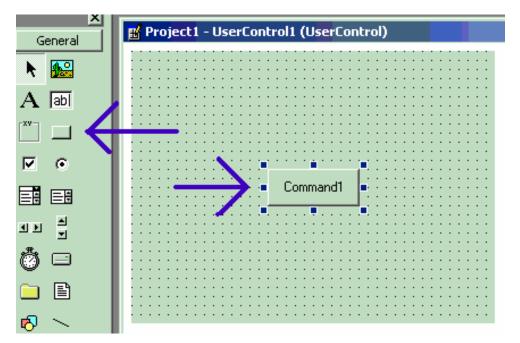
If you touch the **Edit** button when the **Setup file to recall** field contains the name of a non-existent file, you will see a message like this:

If you then touch **Yes**, the scope will display a file like this:

- 'XStreamDSO ConfigurationVBScript ...
- ' Created by CustomDSO ...
- On Error Resume Next
- set dso = CreateObject("LeCroy.XStreamDSO.1")
- ' dso.Display.GridMode = "Dual"
- ' dso.Acquisition.C1.VerScale = 0.1
- ' dso.Acquisition.Horizontal.HorScale = 1e-6
- ' dso.Acquisition.TriggerMode = "Auto"

You can add to this fragment any commands you need.

CustomDSO PlugIn Mode


This is the mode in which CustomDSO really shows its power. You can insert any ActiveX control or graph.

Creating a CustomDSO PlugIn

Follow these steps to create an example Visual Basic PlugIn:

312

- 1. Start a new VB project. Select ActiveX Control from the New tab.
- 2. Resize the control. A. In the Properties window set Width 11940. B. In the Properties window set Height 2475.
- 3. Place two buttons on the control.
 - A. Double click on the command button at left of screen (left arrow below).
 - B. Move and resize the resulting button as required, using the handles (right arrow below).

C. Repeat for the second button. D. In the Properties window set the Name properties to **SingleButton** and **AutoButton**, respectively. E. Set the button Caption properties to **Single** and **Auto**, respectively

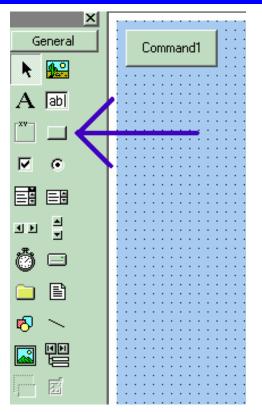
4. Create code for the buttons. A. Double click on the **Single** button. B. In the resulting code window, insert code to make the following subroutine:

```
Private Sub SingleButton_Click()
Dim app as Object
Set app = CreateObject("LeCroy.XStreamApplication")
app.Acquistion.TriggerMode = "Stopped"
End Sub
```

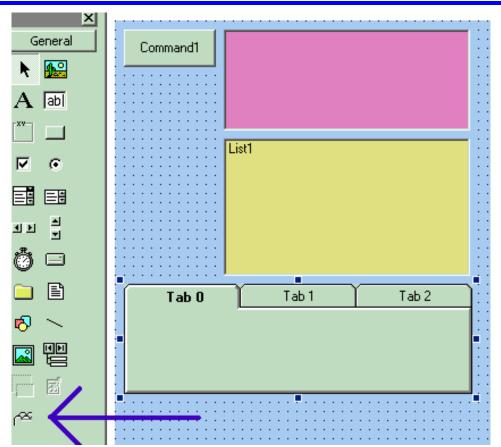
Double click on the Auto button.

In the resulting code window, insert code to make the following subroutine:

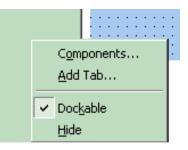
Private Sub AutoButton_Click() Dim app as Object Set app = CreateObject("LeCroy.XStreamApplication") app.Acquistion.TriggerMode = "Auto" End Sub


- Test the Component in Internet Explorer. (This is an optional, but very useful step, because you can test your work without installing anything in the instrument.) A. Start the instrument.
 B. Click the **Run** button In Visual Basic. C. Click the **Stop** button in Visual Basic when you have finished.
- 6. Make the Project in Visual Basic. A. Click the **Stop** button in Visual Basic. B. Select Make Project1.ocx from the File menu.
- Install the PlugIn in the instrument. A. Start the instrument. B. Select ActiveDSO in the Analysis Menu. C. Select PlugIns mode. D. Type "Project1.UserControl1" in the "COM ProgID of Plug-In" text box. E. Click the Install button under the text box.
- 8. Now Click the new Auto and Single buttons to see their effects.

Properties of the Control and its Objects

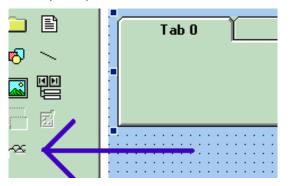

Using the **View Properties** button in Visual Basic, you can customize your PlugIn to your exact requirements. Among the most useful properties are the following: Height, Width, BackColor, Name, Caption.

You can gain access to the properties of your objects by Clicking \underline{V} iew - Properties. Positions and sizes of objects can be changed from \underline{V} iew - Object, by dragging the object or one of its handles.


You can insert any available control into your plug-in. The basic control set is shown in a toolbar at the left of the screen in the picture below. Double click on any control to insert it into the plug-in. In the following example, a command button has just been inserted.

In the next example you can see a command button, a picture box, a list box and a Tabbed Dialog Control.

The Tabbed Control (arrow) is not in the basic tool box. To gain access to it, right click in the tool box at left (but not on an icon.) You will see this menu:



Now select the Microsoft Tabbed Control as shown below, and click on Apply. The control will be added into the toolbox at the left of the screen, where you can double click on it as usual.

Wave Expert

Components Controls Designers Insertable Objects	X
 Microsoft NetShow Player Microsoft Outline Control Microsoft PictureClip Control 6.0 Microsoft RemoteData Control 6.0 Microsoft Rich Textbox Control 6.0 (SP3) Microsoft Script Control 1.0 Microsoft SysInfo Control 6.0 Microsoft Tabbed Dialog Control 6.0 (SP3) Microsoft Telephony Microsoft Voice Commands Microsoft Voice Dictation Microsoft Voice Text Microsoft Windows Common Controls 5.0 (SP2) 	Browse
Microsoft Tabbed Dialog Control 6.0 (SP3)	Selected Items Only
ОК	Cancel Apply

The new control is shown below (arrow).

The system is very versatile, and you can place controls on the tabs of the Tabbed Control. Look in the properties window to see how you can customize your tabs, as illustrated below.

		<u>.</u>			·····,
			r	ShowFocusRect	True
:	Input	Test Point A	Output	Style	0 - ssStyleTabbedDialog
:			- Compan	Tab	1
:			TabHeight	600	
			TabIndex	3	
:				TabMaxWidth	0
•				TabOrientation	0 - ssTabOrientationTop
÷				Tabs	3
÷				TabsPerRow	3
			TabSton	True	

Removing a PlugIn

To remove a plug-in, click on Remove in the PlugIn dialog, as shown below:

Remove Plug-In	
Close CustomDSO dialog and re-open to remove plug-in.	
•	к
Plug-In Setup	
COM ProgID of Plug-In	
Project1.UserControl1	
Install	Remove

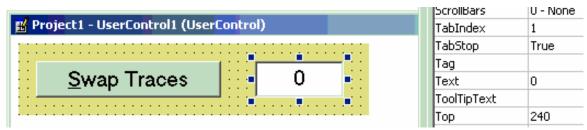
Close the CustomDSO dialog and reopen; the plug-in will vanish.

First Example PlugIn - Exchanging Two Traces on the Grids

The example assumes that the instrument is in dual-grid mode, and that there are at least two visible traces. The routine looks for the visible traces, in the order C1...C4, F1....Fx The number of math traces available depends on the software options loaded on your scope. See Specifications., and it exchanges the first two it finds whenever the button is pressed. Note that arrays of objects can be constructed, allowing numerous objects to be accessed in simple loops.

```
Private Sub Command1_Click()
Dim wm As Object
Set wm = CreateObject("LeCroy.XStreamApplication")
Set acq = wm.Acquisition ' To save typing
Set mat = wm.Math ' To save typing
Dim t(16) As Object
' Create an array of objects to allow looping.
Set t(1) = acq.C1 : Set t(2) = acq.C2
Set t(3) = acq.C3 : Set t(4) = acq.C4
Set t(5) = mat.F1 : Set t(6) = mat.F2
Set t(7) = mat.F3 : Set t(8) = mat.F4
Set t(9) = mat.F5 : Set t(10) = mat.F6
Set t(11) = mat.F7 : Set t(12) = mat.F8
Dim trace As Integer
trace = 0: views = 0
' Exchange the traces on the grids.
   Do
    trace = trace + 1
        If t(trace).View = "True" Then
        views = views + 1
           If t(trace).UseGrid = "YT1" Then
            t(trace).UseGrid = "YT2"
            Else
            t(trace).UseGrid = "YT1"
            End If
        End If
    Loop Until ((trace = 12) Or (views = 2))
' Show the parity of the last swap.
    If Command1.Caption = "Swap A" Then
    Command1.Caption = "Swap B"
    Else
    Command1.Caption = "Swap A"
    End If
Dim TextString As String
TextString = Text1.Text
```

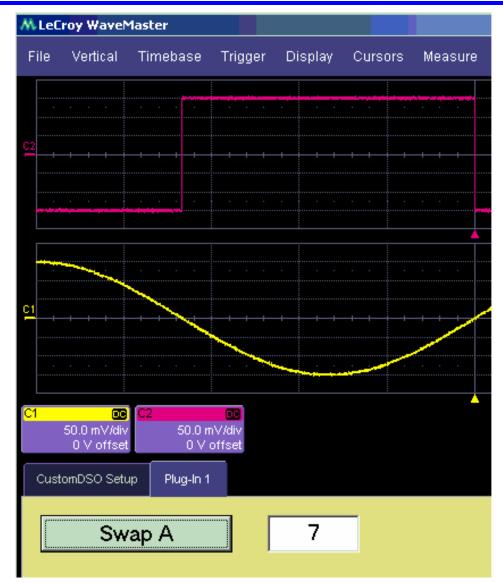
WE-OM-E Rev A


Dim TextValue As Integer TextValue = Val(TextString) + 1

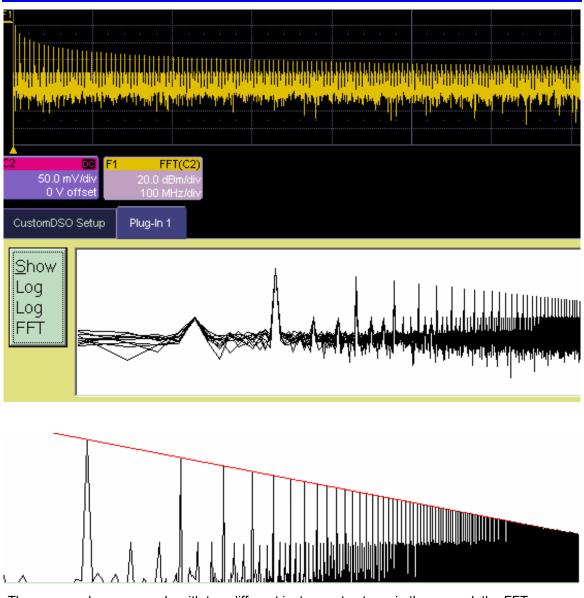
```
TextString = Str(TextValue)
TextString = Trim(TextString)
Text1.Text = TextString
```

End Sub

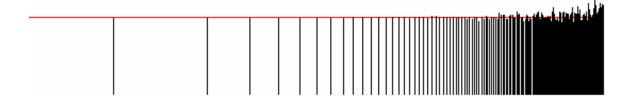
This routine exchanges the first two traces that it finds. You can make it exchange <u>all</u> the traces on a dual grid by changing the penultimate line to this - Loop Until trace = 12


The next figure shows the Visual Basic Screen just after the Text Box text has been set to "0" in the Properties Window, thus defining the initial value.

Here is the result after seven swaps. The counting method could be useful in any routine where numerous operations, such as triggers, have to be performed. In fact, the caption of the button could have been used to show the number of operations.


ActiveX offers a large range of standard controls, including list boxes for selection from a list, and picture boxes for drawing graphs and charts.

Wave Expert

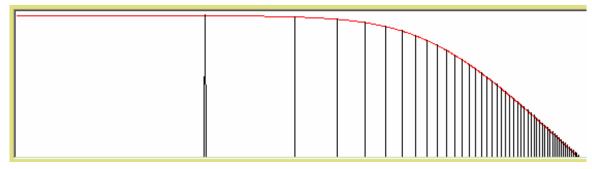


Second Example PlugIn - Log-Log FFT Plot

A frequent requirement is to plot a frequency spectrum on two logarithmic scales. The instrument provides a vertical scale, so CustomDSO has only to change the horizontal one. Here is an example. The first figure has been truncated on the right side.

These examples were made with two different instrument setups: in the second, the FFT was zoomed vertically. The graph has a red line to represent the theoretical envelope for the peaks. This has great potential for testing the transmission characteristics of amplifiers and filters, since the output can be compared with a theoretical curve. Furthermore, if the output is divided by the curve, the result for a perfect DUT would be a horizontal line, which is easy to inspect. The example below has been magnified vertically by a factor of ten. The rise at the right side occurs because the signal is descending into the noise.


```
Private Sub Command1_Click()
' Draw a DSO trace on a logarithmic horizontal scale.
Dim WM As Object
Set WM = CreateObject("LeCroy.XStreamApplication")
Dim Samples As Long
Samples = WM.Math.F1.Out.Result.Samples
Samples = Samples - 1 ' Make it a round number.
   Calculate the horizontal scale.
.
LogSamples = Log(Samples)
XScale = Samples / LogSamples
' Set the scale using DSO variables
Dim Top, Bot As Single
Top = WM.Math.F1.Out.Result.VerticalFrameStop
Bot = WM.Math.F1.Out.Result.VerticalFrameStart
Picture1.Scale (0, Top)-(Samples, Bot)
Dim Wave
Wave = WM.Math.F1.Out.Result.DataArray
Dim Black, White, Blue, Red As Long
Black = 0: White = & HFFFFFF
Blue = &HFF4444: Red = &HFF
' Draw a theoretical curve for the peaks.
StartPoint = Top + 20#: EndPoint = -54.5
Picture1.Line (0, StartPoint)-(Samples, EndPoint), Red
' Draw the plot with linear interpolation between points.
    For X = 1 To Samples
    LogX = XScale * Log(X) : Y = Wave(X)
        If X > 1 Then
        Picture1.Line (LogX, Y)-(OldLogX, OldWave), Black
        End If
    OldLogX = LogX: OldWave = Y
    Next X
```


WE-OM-E Rev A

323

Operator's Manual

End Sub

Here is an example showing a simple one-pole roll-off compared to a curve.

Control Variables in CustomDSO

The simplest way to select variables for use in CustomDSO is to use LeCroy's X-Stream Browser.

PROCESSING WEB OPTION

This feature is available with the XWEB software option.

The Processing Web provides a graphical way to quickly and easily set up math functions and parameter measurements. Using the Processing Web, you can chain together many more math-on-math functions than you can using the Math Setup dialog, where you are limited to two functions. In addition, you can insert a parameter measurement for any math output waveform anywhere in the web.

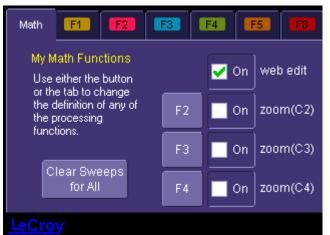
The "web" analogy derives from the nodes and connecting lines used to construct the web. Nodes are math functions selected from the **Add Math Processor** menu, parameters selected from the **Add Measure Processor** menu, or parameter math functions from the **Add Parameter Math Processor** menu.

Another key feature of the Processing Web is that you can preview your waveform at any math or parameter node in the web. Math previews are thumbnail images of the waveform. For parameters, the statistic displayed is the value of the last acquisition:

Statistic for Width Parameter

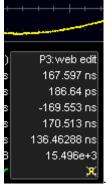
Once you have created a Processing Web setup, you can save and recall it for future use, the same as for any panel setup.

To Use the Web Editor


2. <u>In the menu bar, touch **Display**</u>, then **Web Editor** in the drop-down menu.

Web Editor

3. Touch the **Math** tab and select a math location (F1 to Fx) for the new math function that you are about to create by touching the **Web Edit** button:


Once you select a math location for web editing, it cannot be used for another math function, and will appear as unavailable in the Math Setup dialog:

However, you can cancel web processing within the "Math Setup" dialog by touching the single function, double function, or graph button. Touch the **Measure** tab, then touch the **Web Edit** button, if you want to dedicate a parameter location (P1 to Px) for web processing:

The parameter location you choose will display "Web Edit" under the waveform display grid

4. Touch the **Web Editor** tab to return to the web setup dialog. The math and parameter locations you selected appear as outputs at the far right:

You may have to scroll up or down to see it.

5. Touch the Add Math button and select a math function from the Add Math Processor

Wave Expert

menu. The math function icon will appear on the web setup field: Touch and drag the icon to the desired location.

- 6. If you are using channel inputs, touch the arrow of a channel input icon
 - Then drag a line from the channel to the input of the math function icon. If your math function is a dual input function (such as ratio), select a second input and drag another line to the

second math input. If you are using a memory location (M1 to M4) as an input, drag a line to the math function in the same way as for channel inputs.

Note: You can use a combination of channel input and memory input to your math function.

Touch the output arrow of the math function icon and drag a line to the Fx output on the 6. right-hand side of the setup field. Your math function is complete.

Adding Parameters

Add parameter measurements in the same way as for math functions. Parameters can be connected to any math function in the web.

Adding Previews

Touch the Add Preview button: 1.

A scope-like icon will appear:

Touch the output arrow on the math function or parameter icon and drag a line to the input 2. arrow of the preview icon. A thumbnail view of your signal will appear if the preview icon is connected to a channel output or math function output. If it is connected to a parameter output, a numeric value of the last acquisition will be displayed:

WE-OM-E Rev A

C1C2 C3 C4

327

Operator's Manual

Exiting the Web Editor

To exit, touch the **Close** tab; or, in the menu bar, touch **Display** then **Scope Display** in the drop-down menu.

The scope display will return to the normal waveform display grid.

Viewing the Output

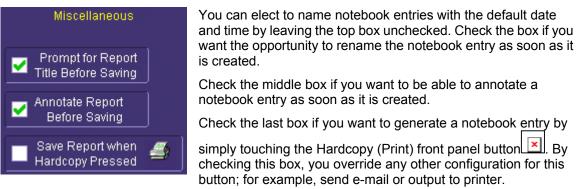
- 1. Touch **Math** in the menu bar, then **Math Setup...** in the drop-down menu.
- 2. Touch the **On** checkbox for the function you want to view.

LABNOTEBOOK

Introduction to LabNotebook

LeCroy's LabNotebook feature extends the documentation capabilities of your scope. It allows you to create an annotated notebook entry containing all displayed waveforms, the setup of the DSO, and user-supplied annotation. The notebook entry can then be converted to hardcopy format -- pdf, rtf, or html -- and printed or e-mailed. You can also use the default report layout or configure your own, and even substitute your own company logo in the header.

Notebook entries are stored in an internal database and are available for recall at any time. Besides storing the waveform data, LabNotebook also stores your panel setups and parameter measurements. You have the capability to back up the database to external media.


The Flashback feature allows you to recall the state of the DSO at a later date, including the saved waveforms and the DSO setup, so that you can make additional measurements. A keyword filter makes it easy to find the correct notebook entry to recall.

You can choose which notebook to use for your entries, and label the notebook by project or user. If the scope is shared among several users, for example, or used for different projects, the data can be kept separately. Similarly, hardcopy reports can be stored in different folders.

Preferences

You should set your preferences before creating notebook entries.

Miscellaneous Settings

WE-OM-E Rev A

🔟. By

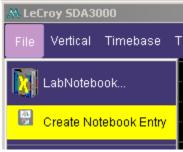
Operator's Manual

Hardcopy Setup

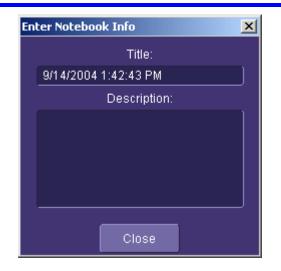
Check the **Use Print Colors** checkbox to place your waveforms on a white background in the notebook entry. This will save printer ink later when you print the hardcopy report.

Touch inside **Hardcopy Area** to determine how much of the screen image to include in the report: grid area only, grid area plus dialog, whole screen.

E-mail Setup



You can e-mail just the pdf or html report; or, you can include additional files: trace data (.trc) for each waveform in the report, a screen dump, a scope setup file, and an xml report record. Touch the checkbox to enable the extra report segments.


Touch the **Configure E-Mail** button to set the recipient address and server information.

Creating a Notebook Entry

1. Touch File in the menu bar, then Create Notebook Entry in the drop-down menu

A dialog box is displayed in which to enter a title and comments for the entry. By default, the entry is titled with the current date and time.

- 2. Touch inside the **Title** field and enter a title, using the pop-up keyboard. Then touch inside the **Description** field and enter a description, if desired, and touch **Close**.
- 3. The notebook entry will display your waveforms in "print colors," that is, on a white background to save printer ink, if you selected that option in notebook Preferences. Otherwise, the waveforms will appear on a black background. A drawing toolbar appears at top:

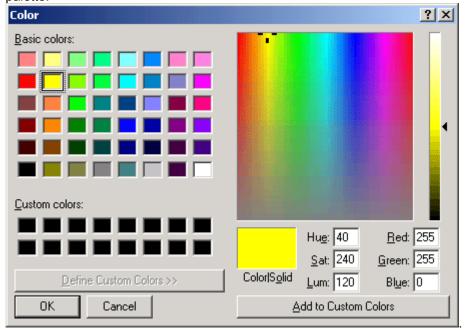
The pen tool enables you to write or draw in freehand. You can use a mouse, or a stylus to do this using the touch screen. Once you click off, you can drag your note anywhere on your waveform.

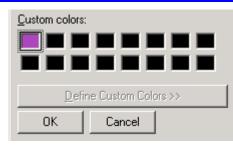
The circle tool enables you to create a circle around a waveform feature that you want to point out. Once you click off, the circle is drawn and you can drag it anywhere on the screen.

The arrow tool enables you to draw lines with arrowheads for callouts. You can rotate these lines through 360 degrees and drag them to any location on the screen.

The text tool enables you to enter text callouts on your report. When you touch this tool, a dialog box opens in which to enter text by means of a pop-up keyboard.

Enter label text	×
Label:	
Close	


After you touch **Close**, your text will appear on the display as a draggable object.


These are the three default colors that you can select for shapes, lines, and text. To use additional colors, touch **More**.

More

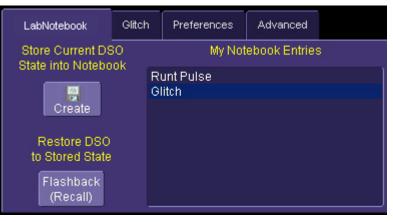
When you touch **More**, a Custom box opens with the default color yellow displayed. Touch the yellow button to open the full color palette:

When you have chosen a custom color, touch **Add to Custom Colors**; the color will appear in the **Custom Colors** palette:

Then touch the color to enable it, and touch $\mathbf{OK}.$ The next object that you create will be in that color.

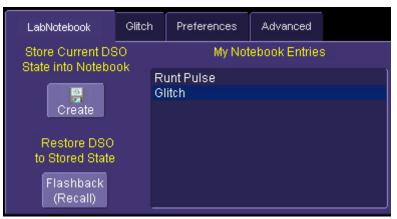
Erase If you want to erase a drawing object, touch it to select it, then touch **Erase** Selected.

Touch Erase All to erase all drawn objects and text.



Touch **Undo** to discard the last object drawn.

The **Move Toolbar** button enables you to place the toolbar anywhere on the screen. Touch the button a second time to return it to its original fixed location.


Done Touch **Done** when you are finished annotating the notebook entry. The name of the entry will appear in the list box in the "LabNotebook" dialog.

You can now create a hardcopy report of it, and email or print it out.

Recalling Notebook Entries

After a notebook entry is made, you can recall it at any time. The recall includes waveforms and scope settings.

- 1. Select the notebook entry from the list box.
- 2. Touch Flashback.
- 3. <u>To exit Flashback</u>, touch the **Undo Flashback** button in the top-right corner of the screen,

or press the Auto trigger button.

Note: The flashback feature currently recalls the DSO Setup, and all displayed waveforms. Some forms of 'result data' are not recalled, including:
a. Persistence data. This will be saved in the hardcopy, and will be printed in the report, but will not be recalled during Flashback.
b. Histogram data. Histograms internally have a 32-bit resolution, but when stored into a trace file and recalled during flashback they are clipped to 16-bits.
c. Floating point waveforms. Certain math operations result in the creation of floating point waveforms with much higher resolution than can be stored in a 16-bit waveform file. This extra resolution will not be preserved when traces are recalled using flashback.
d. Cumulative Measurements. Any measurements that are on when the Lab Notebook entry is created are not saved individually in the database, other than being embedded in the hardcopy image. This means that when flashback is used, the measurements will be recomputed using the waveform data that was recalled. Normally this will not pose a problem, but if cumulative measurements were on, which accumulated data from multiple acquired waveforms, they will loose their history and show instead only the results from the stored waveforms.

. To

А

6

Creating a Report

Once the notebook entry is created, you can easily generate a hardcopy report for e-mailing or printing.

Previewing a Report

Before creating a report, you can preview it by simply touching the **View** button view exit the preview, touch the **Close** button at the right of the dialog.

Locating a Notebook Entry

A search filter is provided to help you locate the notebook entry you want to make a report of. You can search by date or keyword.

1	2004			
Keyword:				
rtojirora.				
	cords containir Keyword:			

- 1. Touch the **Filter** button **Filte** search dialog box opens.
- 2. Touch inside the **Day**, **Month**, and **Year** fields and enter a date. Or touch inside the **Keyword** field and enter a keyword or phrase.
- 3. Touch **Find Now**. Only the entries fitting the date or keyword criteria will now appear in the list box.

WE-OM-E Rev A

Creating the Report

1. Select a notebook entry in the list box

LabNotebook	Glitch	Preferences	Advanced	
Store Current DSO State into Notebook		My Not	ebook Entries	
Create	R	unt Pulse litch		
Restore DSO to Stored State				
Flashback (Recall)	_			

2. Touch inside the **Format** field and select a report format from the pop-up menu

- 3. Touch the Create Report button.
- 4. A dialog box opens in which to name the report and select a folder to contain the report. Touch inside the **File name** field and enter a name using the pop-up keyboard.
- 5. If you want to e-mail or print the data to a network printer, touch More Actions, then the Print or E-Mail button. If you select Print, a Windows dialog box will open for you to select a printer and set options. If you select E-Mail, the report will be sent immediately to the e-mail address configured in Utilities Preferences.

Formatting the Report

LeCroy provides a default report format (template); however, you can use your own format, including company logo.

- 1. Touch the **Advanced** tab.
- 2. Touch inside the **Directory** field and navigate to a folder to contain the reports.
- 3. Touch the **Browse** button next to Template to navigate to an existing report format that you

want to use. Or touch inside the **Template** field and enter the name and path to the template, using the pop-up keyboard. Otherwise, touch the **Use Default** checkbox to use LeCroy's format.

4. To use a logo other that the one provided, which indicates the scope that produced the report, browse to the bit map file or touch inside the Logo field and enter the name and path to the file, using the pop-up keyboard. Otherwise, touch the Use Default checkbox to use LeCroy's logo

Note: If you elect to use your own logo bit map, do not use a bit map larger than 180 pixels (height) x 100 pixels (width).

Managing Notebook Entry Data

Adding Annotations

You can add annotations to your notebook entry at any time.

- 1. Touch the "LabNotebook" tab.
- 2. Touch the notebook entry you want to annotate in the scroll list box. A new tab will appear bearing the name of the selected notebook entry.
- 3. Touch the new tab, then the **Scribble** button again with the drawing toolbar, described in Creating a Notebook Entry.

Deleting Notebook Entries

1. Touch the "LabNotebook" tab.

Delete

2. Touch the **Delete All** button to clear the database, or select a notebook entry in

the list box, then touch the **Delete** button **Delete** to discard just that one entry.

Saving Notebook Entries to a Folder

You can save notebook entries to a folder other than the default.

1. Touch the tab bearing the name of the notebook entry.

Save

2. Touch the **Save Data to** button Data To. A navigation window opens, which provides the opportunity also to open Windows Explorer to navigate to the folder.

3. Touch the **Zip** checkbox

if you want to compress the data before archiving.

Managing the Database

You can begin a new database for your notebook entries at any time, back up the current one, or compress the data.

🖌 Zip

To Select a Database for Backup or Compression

- 1. Touch the **Advanced** tab.
- 2. Touch the **Browse** button. A navigation window opens. Navigate to the database you want to work on.

Touch **Compact** to reduce the size of a database. This function "defragments" the notebook after a large amount of entries have been deleted.



Insert a memory stick into a USB port, then touch **Backup** to send the database to the external media

Backup Database				
- Filename:				
MyLabNotebook.bak.mdb				
Folder				
D:XPort	Browse			
Removable Disk : (F:)				
Backup To Removable Disk	Backup To Folder			
Cancel				

To Start a New Database

Touch the Start New button. The name of the notebook database will be incremented by 1:

CDR-E135

Description

The CDR-E135 clock recovery module is designed to plug into any available slot of a LeCroy WaveExpert mainframe. The module supplies a recovered clock at the data rate of the applied single-ended or differential data signal. The module has four K-type (2.95 mm) female connectors, two signal inputs for Data+ and Data-, and two monitor outputs for Data+ and Data-. The monitor output signals are DC coupled to the input signals, using internal resistive dividers, and must be properly terminated when not in use. The single-ended recovered CLK OUT signal is available at a female SMA connector.

Features

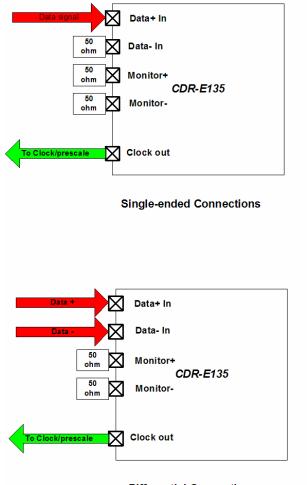
- Wide Frequency Range: 622 Mb/s to 13.5 Gb/s (with option 001)
- High Input Sensitivity
- Very Low Jitter
- Fast Rise/Fall Times
- Differential or Single-ended Inputs
- Monitor Outputs
- Plugs into any available slot in the WaveExpert mainframe

Front of Module

Outputs: K-type (2.92 mm) female connectors for Data+, Data-, Monitor+, Monitor-. Female SMA connector for recovered clock out.

CAUTION: ESD Sensitive

The CDR-E135 inputs are sensitive to Electrostatic Discharge (ESD). To avoid causing damage to the module, always follow anti-static procedures (wear wrist strap, etc.) when making connections.



Use only the supplied SMA-SMA 12-inch (30.48-cm) cable to connect to the oscilloscope.

Led Indicators: LED indicators at the front illuminate for signal present and CDR lock.

Operation

- 1. Plug the CDR-E135 into any available slot in a WaveExpert mainframe. The mainframe does not need to be powered down to have the module inserted; but, allow a few seconds for the instrument to recognize the module.
- 2. Apply the signal under test to the clock recovery module, as shown:

Differential Connections Signal connections to the CDR-E135

Operator's Manual

- 3. The monitor outputs must be terminated either by using the supplied terminators or by routing them into a 50 ohm device, such as one of the sampling modules in the WaveExpert mainframe.
- 4. Connect the recovered clock output to the clock/prescale input on the WaveExpert mainframe using a high-quality SMA cable.
- 5. Select the channel menu for the slot into which the CDR-E135 is plugged, and enter the approximate bit rate of the signal connected to the CDR inputs.
- 6. The **Lock** indicator on the front of the CDR will illuminate to indicate that the clock recovery was successful.
- 7. If the CIS timebase is being used, press the **Find Rate** button in the horizontal setup dialog to lock the CIS timebase to the recovered clock. The green indicator on the horizontal descriptor box will be visible when the CIS timebase is locked:

Product Specifications

Nominal Characteristics

Nominal characteristics describe parameters and attributes that are guaranteed by design, but do not have associated tolerances.

Input Frequency Range: 622 Mb/s to 13.5 Gb/s

Input Impedance: 50 ohms

Max. Input Voltage: 2 V_{p-p} (10 dBm) for Data+ and Data-

Connector Type: 2.92 mm (K-type) for Data and monitor ports, SMA for CLK OUT

Typical Characteristics

Typical characteristics are parameters with no guaranteed performance.

Input Sensitivity: 100 mV_{p-p} (\approx 0 dBm)

Output RMS Jitter (J_{rms}): < 500 fs typical, 800 fs max.

Output clock Rise/Fall Times (Trf): 30 ps typical

PPG-E135

Description

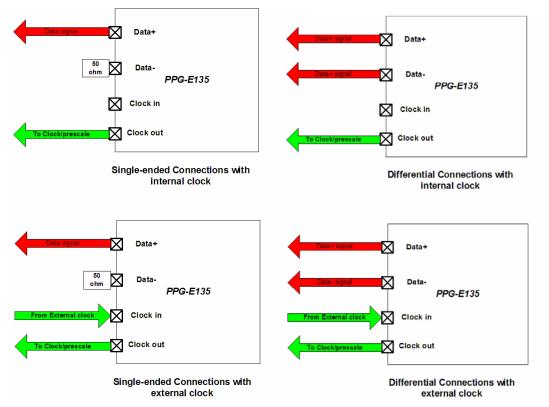
The PPG-E135 is a pulse pattern generator that plugs into any available module slot in a WaveExpert mainframe. The module is capable of generating clock and data signals ranging in frequency from 50 Mb/s to 13.5 Gb/s, using an external clock. The PPG also features an internal clock, which operates in three bands centered at 2.6625 Gb/s, 5.325 Gb/s, and 10.65 Gb/s, adjustable within +/-12.5%. The differential data outputs are at a fixed level of 500 mV_{p-p}, and data patterns of PRBS7,10,15, 23, and 31 are selectable. A variable mark/space ratio is also available.

Features

- Wide Frequency Range: 50 Mb/s to 13.5 Gb/s with external clock
- Internal clock for bit rates of 2.6625, 5.325, and 10.65 Gb/s with +/-12.5% adjustment in each band
- Very Low Jitter
- Fast Rise/Fall Times
- Differential Outputs
- External Clock Input
- Variable Mark/Space Ratio

Front of Module

Outputs: K-type (2.92 mm) female connectors for Data+ and Data-. Female SMA connectors for clock in and clock out.


The PPG-E135 inputs are sensitive to Electrostatic Discharge (ESD). To avoid causing damage to the module, always follow anti-static procedures (wear wrist strap, etc.) when making connections.

Front of PPG-E135

Operation

- 1. Plug the PPG-E135 into any available slot in a WaveExpert mainframe. The mainframe does not need to be powered down to have the module inserted; but, allow a few seconds for the instrument to recognize the module.
- Connect the device under test to the output ports on the front panel of the PPG. Both
 outputs of the generator must be terminated into 50 ohm loads during operation in order to
 maintain the signal quality. If only one output is connected to the device under test, the
 unused output must be terminated using one of the coaxial terminators provided.

- 3. The module is shipped with connector savers. They should be connected to all of the ports of the PPG prior to any cables being connected. The connector savers will prevent inadvertent damage to the module.
- In most cases, the clock output from the PPG will be needed to trigger the WaveExpert. Connect the clock output to the clock/prescale connector on the oscilloscope. The clock output is also active when an external clock is being used.
- 5. Set the PPG using the channel menu corresponding to the slot into which the module is plugged.
- 6. Set the bit rate, pattern, and mark/space ratio, using the controls in the channel menu.

PPG Setup Menu

The channel menu is used to control the settings of the PPG-E135 when it is plugged into the instrument. The controls are summarized in the table below.

C4 Pod				
	Module Information	Miscell		
Serial I	Number: 0005	Freq Ba	ind	Bit Rate
Model	: PPG-E135	9750-11500 MHz		10.000e+9
Type :	None	MarkSpace 0.5	PRBS Pattern	🛃 External Clock
Revisio	on : O			

Frequency Band – This control allows for the selection of frequency band when the internal clock is being used. Select 2.437 to 2.875 Gb/s, 4.875 to 5.750 Gb/s, or 9.750 to 11.5 Gb/s.

Bit Rate – Enter the bit rate within the selected band. This control is not available when an internal clock is used.

PRBS Pattern – Select the bit pattern. Choose from PRBS7, 10, 15, 23, or 31.

Mark/Space Ratio – Selects the ratio of 1's to 0's. The standard patterns all have a mark/space ratio of .5. This control causes the PPG to insert additional 0 values into the data stream to achieve the selected ratio. Ratios of 0.25 and 0.125 are available in addition to 0.5. Note that the complement of these ratios (0.75 and 0.875) is available on the inverted data output.

External Clock – Enables the external clock input on the front of the PPG when selected. When this control is checked, the bit rate control is inactive.

Product Specifications

Nominal Characteristics

Nominal characteristics describe parameters and attributes that are guaranteed by design, but do not have associated tolerances.

Data Frequency Range: 50 Mb/s to 13.5 Gb/s

Clock Input Impedance: 50 ohms

Clock Output Impedance: 50 ohms

Data Output Impedance: 50 ohms

Connector Type: 2.92 mm (K-type) for Data ports, SMA for Clock In and Out

Typical Characteristics

Typical characteristics are parameters with no guaranteed performance.

Data output voltage (each output): 500 mV_{p-p} Output RMS Jitter (J_{rms}): < 1 ps Output data Rise/Fall Times (T_{rf}): 30 ps (20-80%)